Ionenkanäle

Signalübertragung: Wie Ionen durch die Zellmembran schlüpfen

Do, 21.10.2021 — Christina Beck Christina Beck

Icon Biologie

Der diesjährige Nobelpreis für Physiologie oder Medizin wurde für die Entdeckung von Ionenkanälen vergeben, die zwei essentielle Sinnesempfindungen vermitteln: die Temperaturwahrnehmung und die Druckwahrnehmung des Körpers. Ionenkanäle spielen eine universelle Rolle im „Nachrichtenwesen“ eines Organismus: Ihre Aufgaben reichen von der elektrischen Signalverarbeitung im Gehirn bis zu langsamen Prozessen wie der Salz-Rückgewinnung in der Niere. Ermöglicht wurden alle derartigen Untersuchungen durch die sogenannte Patch-Clamp Technik, die in den 1970er Jahren am Göttinger Max-Planck-Institut für Biophysikalische Chemie von Erwin Neher und Bert Sakman entwickelt wurde (beide wurden dafür 1991 mit dem Nobelpreis ausgezeichnet). Wie Ionenkanäle identifiziert wurden und wie sie funktionieren beschreibt die Zellbiologin Christina Beck, Leiterin der Kommunikation der Max-Planck-Gesellschaft.*

Myelin ermöglicht superschnelle Kommunikation zwischen Neuronen

Do, 24.12.2020 - 07:43 — Nora Schultz

Nora SchultzIcon Gehirn

Nervenzellen kommunizieren, indem sie elektrische Signale (Aktionspotentiale) auf eine lange Reise bis zu den Synapsen am Ende ihres Axons schicken – ein aufwändiger und verhältnismäßig langsamer Prozess. Mit der Hilfe der Oligodendrozyten - eine Art von Gliazellen - wird das Axon zum Super-Highway. Diese Zellen umwickeln mehrere Axone abschnittsweise, versorgen sie mit Energie und isolieren die ummantelten Stücke mit ihrer als Myelin bezeichneten Biomembran elektrisch. Innerhalb der umwickelten Abschnitte kann sich das Aktionspotential viel schneller fortpflanzen. Die Entwicklungsbiologin Nora Schultz gibt einen Überblick über den Vorgang der Myelinisierung.*

Optogenetik erleuchtet Informationsverarbeitung im Gehirn

Do, 23.02.2017 - 22:01 — Gero Miesenböck Gero MiesenböckIcon Gehirn-Fliege

Optogenetik ist eine neue Technologie, die Licht und genetisch modifizierte, lichtempfindliche Proteine als Schaltsystem benutzt, um gezielt komplexe molekulare Vorgänge in lebenden Zellen und Zellverbänden bis hin zu lebenden Tieren sichtbar zu machen und zu steuern. Diese, von der Zeitschrift Nature als Methode des Jahres 2010 gefeierte Strategie revolutioniert (nicht nur) die Neurowissenschaften und verspricht bahnbrechende Erkenntnisse und Anwendungen in der Medizin. Gero Miesenböck, aus Österreich stammender Neurophysiologe (Professor an der Oxford University), hat diese Technologie entwickelt und zeigt hier auf, wie mit Hilfe der Optogenetik die neuronale Steuerung des Schlafes erforscht werden kann.*

Proteinmuster chronischer Schmerzen entziffern

Fr, 06.05.2016 - 11:39 — Manuela Schmidt

Manuela SchmidtIcon Gehirn

Schmerz ist ein Hauptsymptom vieler Krankheiten und weltweit der häufigste Grund für Menschen, medizinische Hilfe zu suchen. Während akuter Schmerz ein Warnsignal darstellt, bergen chronische Schmerzen große Herausforderungen sowohl für Patienten als auch für behandelnde Ärzte. Für die Entwicklung nebenwirkungsarmer und effizienter Schmerztherapien wäre die Entzifferung von Proteinen, die ausschließlich an chronischen Schmerzen beteiligt sind, von enormer Bedeutung. Die Neurowissenschafterin Manuela Schmidt ( Max-Planck Institut für experimentelle Medizin, Göttingen) arbeitet an den molekularen Grundlagen der Schmerzentstehung und -weiterleitung.*