RNA

Genetische Choreographie der Entwicklung des menschlichen Embryo

Fr, 16.09.2016 - 08:00 — Ricki Lewis

Ricki LewisIcon MedizinIn den ersten zwei Monaten des Lebens entwickelt der menschliche Embryo bereits alle Organe und Gewebe; darüber, wie diese Prozesse ablaufen, ist aber relativ wenig bekannt. Gene, die an- und abgeschaltet spielen eine zentrale Rolle als Regulatoren der Organogenese. Angeschaltet, wird die DNA eines Gens in RNA transkribiert und diese dann häufig in ein Protein übersetzt, das Zellprozesse initiiert und kontrolliert. Die Genetikerin Ricki Lewis berichtet hier über die eben publizierte Entdeckung eines wesentlichen neuen Programms in der embryonalen Entwicklung: DNA wird zu mehr als 6000 RNAs transkribiert, die nicht für Proteine kodieren und offensichtlich die Organogenese spezifisch steuern.*

Wie Gene aktiv werden

Fr, 26.08.2016 - 10:22 — Patrick Cramer

Patrick CramerIcon BiologieUm die Erbinformation in lebenden Zellen zu nutzen, müssen Gene aktiviert werden. Die Gen-Aktivierung beginnt mit einem Kopiervorgang, der Transkription, bei dem eine Genkopie in Form von RNA erstellt wird. Der Biochemiker Patrick Cramer (Direktor am Max-Planck Institut für biophysikalische Chemie, Göttingen) erforscht mit seinem Team, wie diese Kopiermaschinen ("RNA-Polymerasen") im Detail aufgebaut sind, wie sie arbeiten und gesteuert werden. Es sind bahnbrechenden Untersuchungen mittels strukturbiologischer Methoden, die nun erstmals eine Beschreibung des Kopiervorgangs und der Kopiermaschinen - der RNA-Polymerasen - in atomarem Detail ermöglichen.*

Die großen Übergänge in der Evolution von Organismen und Technologien

Fr, 04.03.2016 - 09:34 — Peter Schuster

Peter SchusterIcon MINTEbenso wie die biologische Evolution verläuft auch die Entwicklung neuer Technologien in großen Sprüngen - „großen Übergängen“. Der theoretische Chemiker Peter Schuster charakterisiert derartige große Übergänge und diskutiert die Voraussetzungen, die zu neuen Organisationsformen in der Biosphäre und zu radikalen Innovationen in der Technologie führen. An Hand eines neuartigen Modells für große Übergänge zeigt er, dass diese nur bei Vorhandensein reichlicher Ressourcen stattfinden können, während Mangel an Ressourcen zur bloßen Optimierung des bereits Vorhandenen taugt.

Können wir Natur und Evolution übertreffen? Teil 2: Zum Design neuer Strukturen

Fr, 19.07.2013 -10:93 — Peter Schuster

ÖAWPeter SchusterThemenschwerpunkt Synthetische Biologie

Können wir mit der Synthetischen Biologie etwas Besseres bewirken, als das, was Natur und Evolution im Laufe der Jahrmilliarden hervorgebracht haben? Der zweite Teil des Artikels handelt von der Schaffung neuartiger Strukturen, einerseits mit Methoden des Rationalen Design, andererseits mit Methoden, die nach den Prinzipien der biologischen Evolution – Variation und Selektion -arbeiten. Der Artikel basiert auf einem Vortrag des Autors anläßlich des Symposiums über Synthetische Biologie, das von der Österreichischen Akademie der Wissenschaften im Mai d.J. veranstaltet wurde und erscheint auf Grund seiner Länge in zwei aufeinander folgenden Teilen.

Letale Mutagenese — Strategie im Kampf gegen Viren

Fr, 24.05.2013 - 11:13 — Peter Schuster

Icon BiologiePeter SchusterDie Vermehrung von Viren ist durch eine sehr hohe Mutationsrate geprägt. Dabei entstehen genetisch uneinheitliche Populationen , sogenannte Quasispezies, die sich in einem dynamischen Gleichgewicht von Mutation und Selektion befinde und damit einem Evolutionsprozeß unterliegen, der u.a. erhöhte Infektiosität und Pathogenität mit sich bringt. Eine weitere Erhöhung der Mutationsrate durch geeignete mutagene Verbindungen kann jedoch zur Auslöschung der Quasispezies-Populationen führen. Letale Mutagenese erscheint daher erfolgversprechend als eine neue Strategie im Kampf gegen virale Infektionen und deren Ausbreitung.

Wie universell ist das Darwinsche Prinzip?

Do, 12.04.2012- 00:00 — Peter Schuster

Icon BiologiePeter Schuster

Das Darwinsche Prinzip der natürlichen Selektion kann als nahezu universell geltend angesehen werden, es ist wirksam in präzellulären Systemen und ebenso auf der Ebene der Einzeller und der Vielzeller. Die Selektion kann jedoch durch funktionelle Kopplung andernfalls konkurrierender Partner – konkretisiert am Modell des Hyperzyklus – aufgehoben werden.

Zum Ursprung des Lebens — Konzepte und Diskussionen

Fr, 16.02.2012- 04:20 — Peter Schuster

Peter SchusterIcon Biologie

Diskussionen über den Ursprung des Lebens – präziser ausgedrückt über den des terrestrischen Lebens – ebenso wie über jenen des Universums, werden in allen unseren Gesellschaften mit großem Interesse verfolgt. Für das letztere Problem existiert ein Standard-Modell, die Urknalltheorie (Big-Bang-Theorie), die sich von einer Extrapolation der Elementarteilchen-Physik auf den Beginn des Universums herleitet.