Max-Planck-Institut

Passatwolken - ein neu entdeckter Feuchtigkeitskreislauf verstärkt den Schutz vor der Erderwärmung

Do, 11.04.2024 — Roland Wengenmayr

Icon Klima

Roland Wengenmayr Tropische Passatwolken wirken wie ein Kühlelement im Klimasystem: In der Äquatorzone dienen sie als Schutzschirm gegen die wärmende Sonnenstrahlung. Doch reduziert der menschengemachte Klimawandel möglicherweise ihre Dichte, sodass sich die Erderwärmung verstärkt? Der Physiker und Wissenschaftsjournalist Roland Wengenmayr berichtet über die Eurec4a-Feldstudie, die Bjorn Stevens, Direktor am Max-Planck-Institut für Meteorologie in Hamburg, mitinitiiert hat. Diese Studie hat mit vier Forschungsschiffen, fünf Flugzeugen und weiteren Instrumenten die tropischen Passatwolken untersucht und einen bislang unbekannten Feuchtigkeitskreislauf - die Flache Mesoskalige Umwälzzirkulation - entdeckt. Ein besseres Verständnis davon, wie sich in Passatwolken Niederschlag bildet und warum die Passatwolken verschiedene Formen annehmen, hilft Klimamodelle und ihre Prognosen zu präzisieren.*

Live-Videos aus dem Körper mit Echtzeit-MRT

Do, 24.08.2023 — Andreas Merian

Andreas Merian

Icon Physik

Die Magnetresonanztomographie, kurz MRT, gehört längst zum medizinischen Alltag: Nach Sportverletzungen oder Unfällen, auf der Suche nach Tumoren oder zur Untersuchung des Gehirns werden MRT- produzierte Aufnahmen genutzt. Bisher musste man sich dabei allerdings mit Standbildern zufriedengeben. Doch der Arbeitsgruppe von Jens Frahm am Max-Planck-Institut für Multidisziplinäre Naturwissenschaften (Göttingen) gelingt es, mit der MRT Videos aufzunehmen. Die Aufnahmen in Echtzeit ermöglichen der Medizin neue Einblicke, zum Beispiel in das schlagende Herz, in Gelenke in Bewegung oder in die komplexen Vorgänge beim Singen, Sprechen oder Schlucken. Der Spektroskopiker Dr. Andreas Merian gibt einen Überblick über diese Verfahren.*

Laser - Technologie aus dem Quantenland mit unzähligen Anwendungsmöglichkeiten

Do, 09.03.2023 — Roland Wengenmayr

Icon Physik

Roland Wengenmayr Laser sind heute überall. Sie befeuern die Glasfasernetze der Telekommunikation, machen dem Internet per Lichtpost Beine, stecken in Laserpointern oder -scannern. Starke Industrielaser bearbeiten Werkstoffe. Laser spüren in der Atmosphäre umweltschädliche Gase auf, in Satelliten erfassen sie kleinste Veränderungen auf der Erde. Jüngste Generationen „optischer“ Atomuhren messen mit Lasern die Zeit immer genauer, Laser steuern künftige Quantencomputer. Auch in der Medizin werden Laser vielfältig genutzt und können in Zukunft noch mehr leisten: Das BIRD-Team, darunter Forschende vom Max-Planck-Institut für Quantenoptik in Garching, will Blutproben auf winzigste molekulare Spuren zur Krebsfrüherkennung durchleuchten. Das erfordert Laser mit extrem kurzen Lichtpulsen, das Spezialgebiet von Ferenc Krausz, Direktor am Institut.*

Signalübertragung: Wie Ionen durch die Zellmembran schlüpfen

Do, 21.10.2021 — Christina Beck Christina Beck

Icon Biologie

Der diesjährige Nobelpreis für Physiologie oder Medizin wurde für die Entdeckung von Ionenkanälen vergeben, die zwei essentielle Sinnesempfindungen vermitteln: die Temperaturwahrnehmung und die Druckwahrnehmung des Körpers. Ionenkanäle spielen eine universelle Rolle im „Nachrichtenwesen“ eines Organismus: Ihre Aufgaben reichen von der elektrischen Signalverarbeitung im Gehirn bis zu langsamen Prozessen wie der Salz-Rückgewinnung in der Niere. Ermöglicht wurden alle derartigen Untersuchungen durch die sogenannte Patch-Clamp Technik, die in den 1970er Jahren am Göttinger Max-Planck-Institut für Biophysikalische Chemie von Erwin Neher und Bert Sakman entwickelt wurde (beide wurden dafür 1991 mit dem Nobelpreis ausgezeichnet). Wie Ionenkanäle identifiziert wurden und wie sie funktionieren beschreibt die Zellbiologin Christina Beck, Leiterin der Kommunikation der Max-Planck-Gesellschaft.*

Alles ganz schön oberflächlich – heterogene Katalyse

Do, 08.10.2021 — Roland Wengenmayr

Icon Chemie

Roland Wengenmayr Sowohl die Synthesen biologischer Verbindungen in der belebten Natur als auch über neunzig Prozent aller von der industriellen Chemie genutzten Reaktionen benötigen Katalysatoren, um die Prozesse effizient in der gewünschten Weise ablaufen zu lassen. In der Biosphäre vermitteln Enzyme in hochselektiver Weise den Kontakt und die Umsetzung der Ausgangsprodukte, in der Industrie vermitteln meistens Metalloberflächen - in der sogenannten heterogenen Katalyse - das Aufeinandertreffen und die Aktivierung der Reaktanten . Wie im zweiten Fall die einzelnen Schritte auf der molekularen Ebene ablaufen, konnte mit neuen Methoden der exakten Oberflächenforschung untersucht werden. Gerhard Ertl, ehem. Direktor am Fritz Haber Institut der Max-Planck-Gesellschaft, konnte so den Prozess der Ammoniaksynthese aus Stickstoff und Wasserstoff und die Oxydation von Kohlenmonoxid zu Kohlendioxid im Detail aufklären. Der Physiker und Wissenschaftsjournalist DI Roland Wengenmayr beschreibt diese Vorgänge.*

Das Privatleben der Braunalgen: Ursprünge und Evolution einer vielzelligen, sexuellen Entwicklung

Do, 02.09.2021 — Susana Coelho

Icon Meere

Susana Coelho Braunalgen sind vielzellige Eukaryonten, die sich seit mehr als einer Milliarde Jahren unabhängig von Tieren und Pflanzen entwickelt haben. Sie haben eine faszinierende Vielfalt an Körpermustern und Fortpflanzungsmerkmalen erfunden, deren molekulare Basis noch vollkommen unerforscht ist. Dr.Susana Coelho, Direktorin am Max-Planck-Institut für Entwicklungsbiologie(Tübingen), und ihr Team nutzen den Reichtum an morphologischen und sexuellen Merkmalen dieser rätselhaften Organismen, um Licht in den Ursprung der Mehrzelligkeit und in die Evolution der Bestimmung des biologischen Geschlechts innerhalb des gesamten eukaryontischen Lebensbaums zu bringen.*

Die Großhirnrinde verarbeitet Information anders als künstliche intelligente Systeme

Do, 05.12.2019 — Wolf Singer

Wolf SingerIcon Gehirn

Bereits heute übertreffen künstliche intelligente Systeme in einigen Bereichen die Leistungen des menschlichen Gehirns. In natürlichen Systemen, vor allem in der Großhirnrinde, sind jedoch Verarbeitungsstrategien verwirklicht, die sich in wesentlichen Aspekten von denen künstlicher Systeme unterscheiden. Ein besseres Verständnis natürlicher intelligenter Systeme kann zur Aufklärung der Ursachen von krankheitsbedingten Störungen beitragen und zudem die Konzeption wesentlich effizienterer künstlicher Systeme erlauben. Diese natürlichen intelligenten Systeme besser zu verstehen ist das zentrale Anliegen eines der renommiertesten Hirnforscher Prof. Dr.Dr.hc.mult Wolf Singer (Max-Planck-Institut für Hirnforschung und Ernst Strüngmann Institut für Neurowissenschaften, Frankfurt)*

Energiewende (4): Den Wandel zeitlich flexibel gestalten

Do, 08.08.2019 - 19:55 — Robert Schlögl

Robert SchlöglIcon Politik und GesellschaftDas Endziel der Energiewende ist ein vollständig defossilisiertes Energiesystem, das auf freien Elektronen und synthetischen Brennstoffen als zwei Erscheinungsformen erneuerbarer Energie basiert. Der Transformationsprozess kann aber auf Grund der systemischen Komplexität, der langen Dauer des Wandels und zahlreicher, von den Akteuren nicht beeinflussbarer Größen nicht nach einem straffen, zeitlich linearen Fahrplan erfolgen. In der 4. Folge seines Eckpunktepapiers „Energie. Wende. Jetzt“ schlägt Prof. Dr. Robert Schlögl (Direktor am Max-Planck-Institut für Chemische Energiekonversion; Mülheim a.d.R.) eine Zwischenlösung vor: möglichst viele Elemente und Relationen des heute existierenden Systems zu übernehmen und unter kontinuierlichem Monitoring nach Möglichkeit nur an den Energieträgern Veränderungen vorzunehmen. (Das für Deutschland erarbeitete Konzept hat in seinen Eckpunkten auch für den EU-Raum Gültigkeit.)*

Energiewende (2): Energiesysteme und Energieträger

Do, 27.06.2019 - 15:04 — Robert Schlögl

Robert SchlöglIcon Politik und GesellschaftDer Chemiker Prof. Dr. Robert Schlögl (Direktor am Max-Planck-Institut für Chemische Energiekonversion; Mülheim a.d.R.) appelliert in seinem Eckpunktepapier „Energie. Wende. Jetzt“ an einen beschleunigten Umbau des Energiesystems, der als „Revolution“ verstanden werden müsse. Dieser Artikel erscheint auf Grund seiner Länge bei uns in mehreren Teilen. Nach einer Einführung [1] erläutert Schlögl, nun im zweiten Teil, dass die Grundlage eines neuen Energiesystems die elektrische Primärenergie sein müsse, das System jedoch nicht gänzlich ohne stoffliche Energieträger funktionieren könne. Diese können teilweise aus Biomasse generiert werden, vor allem aber durch die Umwandlung der primären Elektrizität in beispielsweise synthetische Brennstoffe. Der Bedarf an stofflichen Energieträgern wiederum, erfordere einen geschlossenen Kohlenstoffkreislauf, um wirklich nachhaltig zu sein.

Boris Greber

Boris Greber

Dr. Boris Greber

Forschungsgruppenleiter: Human Stem Cell Pluripotency Laboratory http://www.mpi-muenster.mpg.de/22058/greber Max-Planck-Institut für molekulare Biomedizin, Münster

Redaktion Wed, 20.03.2019 - 00:26