Nervenzellen

Wie körperliche Bedürfnisse und physiologische Zustände die sensorische Wahrnehmung verändern

Do, 11.05.2017 - 07:06 — Ilona Grunwald Kadow Ilona Grunwald KadowIcon Gehirn

Körperliche Verfassung und Lebensumstände können sowohl die Wahrnehmung als auch die Reaktion auf den Geruch oder Geschmack bestimmter Nahrung verändern. Was diese Veränderung jedoch auslöst, ist noch unklar. Die Autorin (ehem. Forschungsgruppenleiterin am MPI für Neurobiologie, jetzt Professor für Nervensystem und Metabolismus an der TU München) konnte zeigen, dass befruchtete Weibchen der Fruchtfliege (Drosophila melanogaster) nach der Befruchtung polyaminreiche Nahrung bevorzugen und diese mittels bestimmter Geruchs- und Geschmacksrezeptoren identifizieren. Körperliche Bedürfnisse können also die Sinne und letztlich das Verhalten beeinflussen.*

Optogenetik erleuchtet Informationsverarbeitung im Gehirn

Do, 23.02.2017 - 22:01 — Gero Miesenböck Gero MiesenböckIcon Gehirn-Fliege

Optogenetik ist eine neue Technologie, die Licht und genetisch modifizierte, lichtempfindliche Proteine als Schaltsystem benutzt, um gezielt komplexe molekulare Vorgänge in lebenden Zellen und Zellverbänden bis hin zu lebenden Tieren sichtbar zu machen und zu steuern. Diese, von der Zeitschrift Nature als Methode des Jahres 2010 gefeierte Strategie revolutioniert (nicht nur) die Neurowissenschaften und verspricht bahnbrechende Erkenntnisse und Anwendungen in der Medizin. Gero Miesenböck, aus Österreich stammender Neurophysiologe (Professor an der Oxford University), hat diese Technologie entwickelt und zeigt hier auf, wie mit Hilfe der Optogenetik die neuronale Steuerung des Schlafes erforscht werden kann.*

Placebo-Effekte: Heilung aus dem Nichts

Do, 16.02.2017 - 10:45 — Susanne Donner

Susanne DonnerIcon Gehirn

Erwartungshaltung und Konditionierung können bewirken, dass Scheinmedikamente ebenso wirkungsvoll werden wie Arzneien – zumindest gegen Schmerz, bei psychischen Erkrankungen und Allergien. Die Erforschung dieser sogenannten Placebo-Effekte ist zu einem enorm wichtigen, intensiv untersuchten Thema in der Medizin geworden. Die Chemikerin und Wissenschaftsjournalistin Susanne Donner beschreibt hier, wie Veränderungen auf Ebene des Gehirns und Rückenmarks dieses Phänomen erklären können.*

Wie Nervenzellen miteinander reden

Fr, 30.09.2016 - 06:03 — Reinhard Jahn

Reinhard JahnIcon Gehirn

Nervenzellen sind miteinander durch Synapsen verbunden, an denen Signale in Form von Botenstoffen übertragen werden. Diese Botenstoffe liegen- portionsweise in kleine Membranbläschen (die synaptischen Vesikel) verpackt - im Inneren der Nervenzellen bereit. Wenn elektrische Signale anzeigen, dass eine Botschaft übermittelt werden soll, verschmelzen einige synaptische Vesikel mit der Zellmembran und entleeren ihren Inhalt nach außen. Wie dies genau funktioniert, hat der Biochemiker Reinhard Jahn, Direktor am Max-Planck-Institut für biophysikalische Chemie in Göttingen, erforscht. Nach zahlreichen hochkarätigen Preisen für seine wegweisenden Arbeiten wird er im November mit dem Balzanpreis 2016, einem der bedeutendsten Wissenschaftspreise, ausgezeichnet.*

Wie die Schwangere, so die Kinder

Fr, 05.08.2016 - 06:27 — Susanne Donner

Susanne DonnerIcon Gehirn

Schon Einflüsse im Mutterleib prägen das ungeborene Kind, zum Teil lebenslang. Stress der Mutter führt dazu, dass ihr Kind schneller und oft gestresst ist, andererseits aber unter Stress auch vergleichsweise gute Leistungen erbringt. Ängstliche Schwangere haben tendenziell eher vorsichtige Babys - u.U. ein Vorteil, um Gefahren blitzschnell zu erkennen, aber auch ein Nachteil in einer sicheren Welt. Eine der neuesten Hypothesen besagt, pränataler Stress könnte den geistigen Abbau im Alter bedingen. Die Chemikerin und Wissenschaftsjournalistin Susanne Donner fasst den gegenwärtigen Stand der Forschung zu diesem ungemein wichtigen Thema zusammen*.

Ein Dach mit 36 Löchern abdichten - vorsichtiger Optimismus in der Alzheimertherapie.

Fr, 24.06.2016 - 06:03 — Inge Schuster

Inge SchusterIcon Gehirn

Vor wenigen Tagen ist in der Fachzeitschrift "Aging" ein Artikel erschienen, der einen neuen Therapieansatz für die Alzheimer-Krankheit beschreibt, mit dem bei einem (allerdings) kleinen Patientenkollektiv ein noch nie dagewesener Erfolg erzielt wurde [1]. Der Ansatz beruht auf den Forschungsergebnissen von Dale Bredesen, einem international renommierten Experten auf dem Gebiet der Mechanismen neurodegenerativer Erkrankungen. Er strebt dabei eine Optimierung der Signale von Nervenzellen an, die hinsichtlich Bildung und Abbau von Synapsen in ein Ungleichgewicht geraten sind.

Die Alzheimerkrankheit: Tau-Protein zur frühen Prognose des Gedächtnisverlusts

Fr, 27.05.2016 - 15:18 — Francis S. Collins

Francis S. CollinsIcon Gehirn

Lange vor den ersten Anzeichen von Gedächtnisproblemen erfolgen bei Alzheimerkranken bereits Veränderungen im Gehirn. Charakteristisch dafür sind zwei Typen unlöslicher Proteinablagerungen: beta-Amyloid Plaques ausserhalb und verklumpte Tau-Protein Fibrillen innerhalb der Nervenzellen des Gehirns. Francis Collins, Direktor der US National Institutes of Health, weist hier auf eine neue Studie hin, die Kartierungen dieser Ablagerungen mittels bildgebender Verfahren (PET- und MRI-Scans) ausgeführt hat. Die Anreicherung des Tau-Proteins im Schläfenlappen korreliert dabei eng mit den Symptomen des Gedächtnisverlustes. Demnach könnten PET-Scans der Tau-Protein Verteilung bereits frühzeitig Aussagen über das Stadium der Krankheit und Prognosen über deren Fortschreiten erlauben und das Ansprechen auf Therapien kontrollieren.

Proteinmuster chronischer Schmerzen entziffern

Fr, 06.05.2016 - 11:39 — Manuela Schmidt

Manuela SchmidtIcon Gehirn

Schmerz ist ein Hauptsymptom vieler Krankheiten und weltweit der häufigste Grund für Menschen, medizinische Hilfe zu suchen. Während akuter Schmerz ein Warnsignal darstellt, bergen chronische Schmerzen große Herausforderungen sowohl für Patienten als auch für behandelnde Ärzte. Für die Entwicklung nebenwirkungsarmer und effizienter Schmerztherapien wäre die Entzifferung von Proteinen, die ausschließlich an chronischen Schmerzen beteiligt sind, von enormer Bedeutung. Die Neurowissenschafterin Manuela Schmidt ( Max-Planck Institut für experimentelle Medizin, Göttingen) arbeitet an den molekularen Grundlagen der Schmerzentstehung und -weiterleitung.*

Neuronale Netze mithilfe der Zebrafischlarve erforschen

Fr, 22.04.2016 - 09:44 — Ruben Portugues

Ruben PortuguesIcon Gehirn

Eine Hauptfunktion unseres Gehirns ist es, Sinneseindrücke zu verarbeiten, um das optimale Verhalten zu wählen. Die Berechnungen, mit denen das Gehirn Sinneseindrücke und Verhalten verbindet, sind kaum verstanden. Um diese komplexen Vorgänge zu verstehen, untersucht Ruben Portugues, Forschungsgruppenleiter am Max-Planck-Institut für Neurobiologie (Martinsried), einfachere Modellorganismen, nämlich die transparente Larve des Zebrafisches. Diese ermöglicht es, mit neuesten optischen Methoden dem gesamten Gehirn und selbst einzelnen Nervenzellen bei der Arbeit zuzuschauen und hilft zu verstehen, wie neuronale Netzwerke Sinneseindrücke in Verhalten übersetzen.*

Mikroglia: Gesundheitswächter im Gehirn

Fr, 08.04.2016 - 08:07 — Susanne Donner

Susanne DonnerIcon Gehirn

Mikrogliazellen sind die erste Linie des Verteidigungssystems im Gehirn. Sie wachen mit ihren mobilen Fortsätzen dauernd über den Gesundheitszustand unseres Denkorgans. Bei Krankheit oder Verletzung begeben sie sich sofort zum Katastrophenherd. Die Chemikerin und Wissenschaftsjournalistin Susanne Donner beschreibt wie Mikroglia andere Immunzellen zu Hilfe rufen und Bakterien beseitigen, aber auch bei ganz gewöhnlichen Denkvorgängen, wie sie zum Lernen und Umdenken nötig sind, helfen.*