RNA

Finden und Ersetzen: Genchirurgie mittels CRISPR/Cas9 erscheint ein aussichtsreicher Weg zur Gentherapie

Do, 02.02.2017 - 11:42 — Francis S. Collins

Francis S. CollinsIcon MedizinIn der Forschung zur Gentherapie gibt es eine immerwährende Herausforderung: Es ist die Suche nach einem verlässlichen Weg, auf dem man eine intakte Kopie eines Gens sicher in relevante Zellen einschleusen kann, welches dann die Funktion eines fehlerhaften Gens übernehmen soll. Mit der aktuellen Entdeckung leistungsfähiger Instrumente der Genchirurgie ("Gene editing"), insbesondere des CRISPR-Cas9 Systems - beginnen sich nun die Chancen einer erfolgreichen Gentherapie zu vergrößern. Francis Collins, Direktor der US National Institutes of Health (NIH) und ehem. Leiter des "Human Genome Project" berichtet hier von einer zukunftsweisenden Untersuchung , die nicht nur Fortschritte in der Heilung der seltenen Erbkrankheit "septische Granulomatose" verspricht, sondern auch von vielen anderen Erbkrankheiten.*

Genetische Choreographie der Entwicklung des menschlichen Embryo

Fr, 16.09.2016 - 08:00 — Ricki Lewis

Ricki LewisIcon MedizinIn den ersten zwei Monaten des Lebens entwickelt der menschliche Embryo bereits alle Organe und Gewebe; darüber, wie diese Prozesse ablaufen, ist aber relativ wenig bekannt. Gene, die an- und abgeschaltet spielen eine zentrale Rolle als Regulatoren der Organogenese. Angeschaltet, wird die DNA eines Gens in RNA transkribiert und diese dann häufig in ein Protein übersetzt, das Zellprozesse initiiert und kontrolliert. Die Genetikerin Ricki Lewis berichtet hier über die eben publizierte Entdeckung eines wesentlichen neuen Programms in der embryonalen Entwicklung: DNA wird zu mehr als 6000 RNAs transkribiert, die nicht für Proteine kodieren und offensichtlich die Organogenese spezifisch steuern.*

Wie Gene aktiv werden

Fr, 26.08.2016 - 10:22 — Patrick Cramer

Patrick CramerIcon BiologieUm die Erbinformation in lebenden Zellen zu nutzen, müssen Gene aktiviert werden. Die Gen-Aktivierung beginnt mit einem Kopiervorgang, der Transkription, bei dem eine Genkopie in Form von RNA erstellt wird. Der Biochemiker Patrick Cramer (Direktor am Max-Planck Institut für biophysikalische Chemie, Göttingen) erforscht mit seinem Team, wie diese Kopiermaschinen ("RNA-Polymerasen") im Detail aufgebaut sind, wie sie arbeiten und gesteuert werden. Es sind bahnbrechenden Untersuchungen mittels strukturbiologischer Methoden, die nun erstmals eine Beschreibung des Kopiervorgangs und der Kopiermaschinen - der RNA-Polymerasen - in atomarem Detail ermöglichen. *

Die großen Übergänge in der Evolution von Organismen und Technologien

Fr, 04.03.2016 - 09:34 — Peter Schuster

Peter SchusterIcon MINTEbenso wie die biologische Evolution verläuft auch die Entwicklung neuer Technologien in großen Sprüngen - „großen Übergängen“. Der theoretische Chemiker Peter Schuster charakterisiert derartige große Übergänge und diskutiert die Voraussetzungen, die zu neuen Organisationsformen in der Biosphäre und zu radikalen Innovationen in der Technologie führen. An Hand eines neuartigen Modells für große Übergänge zeigt er, dass diese nur bei Vorhandensein reichlicher Ressourcen stattfinden können, während Mangel an Ressourcen zur bloßen Optimierung des bereits Vorhandenen taugt.

Können wir Natur und Evolution übertreffen? Teil 2: Zum Design neuer Strukturen

Themenschwerpunkt Synthetische Biologie


ÖAWKönnen wir mit der Synthetischen Biologie etwas Besseres bewirken, als das, was Natur und Evolution im Laufe der Jahrmilliarden hervorgebracht haben? Der zweite Teil des Artikels handelt von der Schaffung neuartiger Strukturen, einerseits mit Methoden des Rationalen Design, andererseits mit Methoden, die nach den Prinzipien der biologischen Evolution – Variation und Selektion -arbeiten. Der Artikel basiert auf einem Vortrag des Autors anläßlich des Symposiums über Synthetische Biologie, das von der Österreichischen Akademie der Wissenschaften im Mai d.J. veranstaltet wurde und erscheint auf Grund seiner Länge in zwei aufeinander folgenden Teilen.

Peter SchusterZwei grundsätzlich unterschiedliche Strategien zur Erzeugung von Molekülen und Organismen mit vorbestimmten Eigenschaften stehen einander gegenüber:

  • das rationale Design, welches auf unserem gesamten biologischen Wissen über Strukturen und Funktionen von Biomolekülen aufbaut, und
  • das evolutionäre Design, das die Prinzipien der biologischen Evolution zur Selektion von Objekten mit gewünschten Eigenschaften anwendet.

Die Literatur zum Thema Design von Biomolekülen ist enorm umfangreich [1]. Wir müssen uns hier auf wenige Beispiele beschränken, welche die unterschiedliche Anwendbarkeit beider Strategien sowie ihre Stärken und Schwächen aufzeigen.

Rationales Design

Das rationale Design baut auf dem Paradigma der konventionellen theoretischen Strukturbiologie auf:
Paradigma der Strukturbiologie

Letale Mutagenese — Strategie im Kampf gegen Viren

Icon BiologieDie Vermehrung von Viren ist durch eine sehr hohe Mutationsrate geprägt. Dabei entstehen genetisch uneinheitliche Populationen , sogenannte Quasispezies, die sich in einem dynamischen Gleichgewicht von Mutation und Selektion befinde und damit einem Evolutionsprozeß unterliegen, der u.a. erhöhte Infektiosität und Pathogenität mit sich bringt. Eine weitere Erhöhung der Mutationsrate durch geeignete mutagene Verbindungen kann jedoch zur Auslöschung der Quasispezies-Populationen führen. Letale Mutagenese erscheint daher erfolgversprechend als eine neue Strategie im Kampf gegen virale Infektionen und deren Ausbreitung.

Peter SchusterBasierend auf fulminanten Erfolgen in der Bekämpfung von Infektionskrankheiten ging man in der Mitte des vorigen Jahrhunderts davon aus, daß die Erreger dieser Krankheiten wohl bald ausgerottet sein würden. Zwar wurden vereinzelt Veränderungen der Erregerstämme detektiert, diesen aber kaum Beachtung geschenkt. Erst der systematische Einsatz molekularbiologischer Methoden, vor allem die genetische Analyse der Mikroorganismen, zeigte wie schnell und in welchem Ausmaß Veränderungen eintreten, die vormals effektive antibakterielle und antivirale Strategien unwirksam werden lassen.

Zum Ursprung des Lebens — Konzepte und Diskussionen

Peter SchusterDiskussionen über den Ursprung des Lebens – präziser ausgedrückt über den des terrestrischen Lebens – ebenso wie über jenen des Universums, werden in allen unseren Gesellschaften mit großem Interesse verfolgt. Für das letztere Problem existiert ein Standard-Modell, die Urknalltheorie (Big-Bang-Theorie), die sich von einer Extrapolation der Elementarteilchen-Physik auf den Beginn des Universums herleitet.

Nichts Vergleichbares gibt es hingegen, wenn man nach der Entstehung des Lebens fragt. Es konkurrieren zwar viele unterschiedliche Ideen, jedoch bietet keine von ihnen eine ausreichend plausible Erklärung dafür, wie die ersten lebenden Organismen entstanden sein könnten. Es ist ja nicht einmal klar, was unter dem Begriff „Leben“ zu verstehen ist, und mögliche Definitionen sind heftig umstritten.

Wo ist die Grenzlinie zwischen Unbelebtem und Belebtem zu ziehen?

Eine Liste von Kriterien zur Unterscheidung was noch nicht und was schon Leben bedeutet, könnte beispielsweise enthalten

Sehr geehrter Besucher, wir laden Sie herzlich ein, Ihre Meinung, Kritik und/oder auch Fragen in einer Mailnachricht an uns zu deponieren. Gültigen Absendern werden wir zügig antworten.

Inhalt abgleichen