Photosynthese

Jan Ingenhousz, Leibarzt Maria Theresias und Entdecker der Photosynthese

Do, 24.08.2017 - 14:05 — Robert W. Rosner

Robert W. RosnerIcon WissenschaftsgeschichteZum dreihundertsten Geburtstag Maria Theresias wird heuer viel über die Rolle dieser außergewöhnlichen Frau als Regentin eines Vielvölkerstaats, Strategin, Reformerin, die u.a. die Schulpflicht eingeführt hat und als Mutter gesprochen. Kaum erwähnt werden dabei aber ihre Verdienste bei der Umgestaltung des medizinischen Unterrichts an der Wiener Universität und ihre Verdienste im Kampf gegen die Pocken. Maria Theresia hat als Leibärzte den Holländer Gerhard van Swieten nach Wien geholt, der den medizinischen Unterricht an der Universität grundlegend umgestaltet hat und den Arzt und Naturforscher Ian Ingenhousz, ebenfalls einen Holländer, um vor vielen anderen Ländern Europas eine Impfung zum Schutz vor den lebensbedrohenden Pocken einzuführen. Mit Ingenhousz kam auch ein herausragenden Forscher nach Wien, dem wir u.a. fundamentale Entdeckungen zur Photosynthese verdanken. Der Chemiker und Wissenschaftshistoriker Robert Rosner stellt den hier wenig bekannten Wissenschafter Jan Ingenhousz vor.

Warum mehr CO₂ in der Atmosphäre (meistens) nicht zu einem Mehr an Pflanzenwachstum führt

Fr, 29.07.2016 - 07:49 — Christian Körner

Christian KörnerIcon BiologieDas Pflanzenwachstum beruht auf dem Prozess der Photosynthese . Entgegen der weitverbreiteten Vorstellung, dass dieser Vorgang durch Trockenheit oder Kälte limitiert wird und dies die Versorgung der Pflanzen mit den, für ihr strukturelles Wachstum essentiellen Kohlehydraten begrenzt, ist das Gegenteil der Fall. Univ.Prof. Christian Körner (Botanisches Institut, Univ. Basel) zeigt hier auf, dass es die zellulären Vorgänge der Gewebebildung sind, die zuerst von einem Mangel an Wasser und Nährstoffen und von Kälte betroffen sind und damit die Rate des Wachstums bestimmen. In der freien Natur, wo Pflanzen um die meist knappen Ressourcen konkurrieren, bestimmt die Gewebebildung den Bedarf an den Produkten der Photosynthese (und deren Generierung).Dies demonstriert Körner in einer einzigartigen Langzeitstudie an einem naturbelassenen Wald: ein vermehrtes CO2-Angebot führt nicht zu einem verstärktem Wachstum der Bäume.

Erzeugung und Speicherung von Energie. Was kann die Chemie dazu beitragen?

Fr, 22.05.2015 - 08:30 — Niyazi Serdar Sariciftci

Niyazi Serdar SariciftciIcon ChemieMit dem Umstieg von fossilen auf erneuerbare Energien steht das Problem von Speicherung und Transport dieser Energien im Vordergrund. Als Lösung bietet sich die Umwandlung von Wind- und vor allem von Solarenergie in chemische Energie – u.a. in Form synthetischer Brennstoffe – an. Vorbild hierfür ist im Prinzip die Photosynthese von Pflanzen. Der Physiker Sariciftci - weltweit anerkannter Pionier in diesem Gebiet- sieht darin erfolgversprechende Möglichkeiten für eine Revolution im Energiebereich.

Das mikrobielle Leben der Tiefsee

Icon BiologieDer tiefe, dunkle Ozean - das größte und am wenigsten erforschte Ökosystem der Erde - bietet Lebensraum für eine enorme Vielfalt an Mikroorganismen. Zu deren Stoffwechsel liefert der Autor essentielle Beiträge mit dem Ziel die biogeochemikalischen Kreisläufe im Meer (mikrobielle Ozeanographie) zu erforschen und damit zu einem generell besseren Verständnis des globalen Kohlenstoffkreislaufs und damit des Ökosystems Erde beizutragen.

Gerhard HerndlDer tiefe dunkle Ozean nimmt mehr als 70% des Gesamtvolumens der Meere ein. Er ist der größte und zugleich unerforschteste Lebensraum unserer Erde, eine Zone ohne Licht, welches dort lebenden Organismen mittels Photosynthese ein autotrophes Leben ermöglichen könnte. Bereits ab 200 m Tiefe – der mesopelagialen- oder „Zwielicht“ Zone - dient schwach durchschimmerndes Licht nur noch der Orientierung von Lebewesen; ab 1000 m herrscht totale Finsternis. Die hier lebenden Organismen müssen sich auch dem zunehmenden Druck der Wassersäule – 1bar je 10 m; bei 5000 m sind es bereits 500 bar – anpassen, den niedrigen Temperaturen von etwa 2 °C und dem verringerten Nährstoffangebot.

Der Natur abgeschaut: Die Farbstoffsolarzelle

Dieser Artikel erschien erstmals am 18. Oktober 2012 im ScienceBlog. Im Zuge der Aufarbeitung des Archivs nach dem Relaunch im April präsentieren wir ihn im Rahmen des »Themenschwerpunkts Synthetische Biologie« erneut.


Icon ChemiePflanzen fangen mit Hilfe von Farbstoffen das Sonnenlicht ein und verwandeln dieses in Energie, welche sie zur Synthese organischer Baustoffe aus Kohlendioxyd und Wasser – der Photosynthese – befähigt. Die neuentwickelte Farbstoffsolarzelle (nach ihrem Erfinder „Graetzel-Zelle“ benannt) ahmt diesen Prozeß nach, indem sie mittels eines organischen Farbstoffes Sonnenlicht absorbiert und in elektrischen Strom umwandelt.

Michael GrätzelEs ist eine der größten gegenwärtigen Herausforderungen der Menschheit, fossile, zur Neige gehende Brennstoffe durch erneuerbare Energieformen zu ersetzen und dabei gleichzeitig Schritt zu halten mit einem weltweit steigenden Verbrauch an Energie, bedingt durch das rasche Wachstum der Bevölkerung und den zunehmenden Bedarf – vor allem der Entwicklungsländer. Eine akzeptable Lösung dieser Problemstellung darf zudem nur niedrige Kosten verursachen, und die dazu verwendeten Rohstoffe müssen in reichlichem Ausmaß vorhanden sein.

Die Sonne als Energiequelle - Photovoltaik

Die Sonne spendet ein Übermaß an reiner und kostenloser Energie. Von den hundertzwanzigtausend Terawatt (Terawatt = 1 Milliarde kW) Sonnenenergie, mit denen sie unsere Erde bestrahlt, verbraucht die Menschheit bloß einen winzigen Bruchteil: rund 15 Terawatt. Bereits seit mehr als 3,5 Milliarden Jahren macht sich die Natur die Energie der Sonne mittels Photosynthese zunutze, um in Pflanzen, Algen und Bakterien aus anorganischen Stoffen organische Verbindungen zu synthetisieren und damit alles Leben der Erde zu ermöglichen und zu ernähren. Die immense und unerschöpfliche Sonnenenergie mit Hilfe photovoltaischer Technologien in Elektrizität zu wandeln erscheint damit als logische Schlußfolgerung, um das Problem unserer Energieversorgung langfristig und nachhaltig zu lösen. In der Realisierung der Nutzung von Sonnenenergie spielen natürlich Kosten und Wirkungsgrad der Solarzellen eine prioritäre Rolle.

Der lebenspendende Strom — Wie Lebewesen sich die Energie des Sonnenlichts teilen

Icon BiologieDas Licht, das von der Sonne zur Erde gelangt, verwandelt sich zum grössten Teil in Wärme und verlässt früher oder später unseren Globus wieder. Dennoch ist die Sonnenenergie zum lebenspendenden Strom geworden, an dem – über die Nahrungskette - alle teilhaben.

Edward Munch: Die SonneEdvard Munch: Die Sonne (1910 –13)

«Die Sonne ging auf bei Paderborn, / Mit sehr verdrossner Gebärde. / Sie treibt in der Tat ein verdriesslich Geschäft – / Beleuchten die dumme Erde!» – Mit diesen Worten aus «Deutschland. Ein Wintermärchen» gibt Heinrich Heine unserer Erde übergrosse Bedeutung, obwohl er in seinem bitteren Versepos sonst nur wenig für sie übrig hat. Die Sonne gönnt uns nur ein Zehnmilliardstel ihres Lichts – und mehr als die Hälfte davon wird dann noch von unserer Lufthülle verschluckt oder in den Weltraum zurückgestrahlt.

Jeder Quadratmeter Erdoberfläche empfängt im Durchschnitt pro Jahr nur etwa 1700 Kilokalorien Energie in Form von sichtbarem Licht, das sich zum grössten Teil in Wärme verwandelt und früher oder später als infrarote Strahlen die Erde auch wieder verlässt.

Einfangen der Sonnenenergie

Dennoch schafften es einzellige Lebewesen bereits vor fast vier Milliarden Jahren, einen kleinen Teil dieser Lichtenergie einzufangen und davon zu leben. Bald lernten andere Lebewesen, sich von diesen Lichtessern – und damit indirekt von der Sonne – zu ernähren. Sonnenenergie wurde zum lebenspendenden Strom, dessen unzählige Verästelungen die Vielfalt des Lebens auf unserem Planeten speisen. Diesem Strom entziehen sich nur urtümliche Einzeller, die tief unter der Erdoberfläche oder im Umfeld vulkanischer Erdspalten leben und geochemische Prozesse als Energiequelle verwenden.

Sonnenkinder — Wie das atomare Feuer der Sonne die Meerestiefen erhellt

Icon BiologieSonnenlicht ist eine unerschöpfliche Energiequelle, welche die Natur schon sehr früh mit Hilfe des grünen Sonnenkollektors Chlorophyll in verwertbare Energie umzuwandeln gelernt hat.

Gottfried SchatzAm Anfang war das Licht. Der Urknall, der das Universum vor etwa 14 Milliarden Jahren schuf, war eine Explosion strahlender Energie. Als sich das Universum dann ausdehnte und abkühlte, ermattete das Licht zu unsichtbaren Radiowellen. Schon nach einigen hunderttausend Jahren begann eine 30 Millionen Jahre währende Finsternis, in der sich ein Teil der Strahlung zu Materie verdichtete. Diese wiederum ballte sich zu Gaswolken und dann zu Galaxien zusammen. In deren Innerem presste die ungeheure Schwerkraft Atomkerne so stark zusammen, dass sie miteinander verschmolzen und dabei gewaltige Energiemengen als Licht freisetzten. Die atomaren Feuer dieser ersten Sterne schenkten dem jungen Universum wieder Licht.

Sehr geehrter Besucher, wir laden Sie herzlich ein, Ihre Meinung, Kritik und/oder auch Fragen in einer Mailnachricht an uns zu deponieren. Gültigen Absendern werden wir zügig antworten.

Inhalt abgleichen