Membran

Ist Leben konstruierbar? Minimalisierung von Lebensprozessen

Do, 27.10.2016 - 05:13 — Petra Schwille

Petra SchwilleIcon BiologieTrotz der Erfolgsgeschichte der Biowissenschaften in den letzten Jahrzehnten wissen wir die Frage, wo die Trennlinie zwischen belebter und unbelebter Natur genau verläuft, noch immer nicht überzeugend zu beantworten. Eines der wichtigen Kennzeichen der uns bekannten belebten Systeme ist ihre enorme Komplexität. Ist diese aber eine notwendige Bedingung? Die Biophysikerin Petra Schwille (Direktorin am Max-Planck Institut für Biochemie, München) versucht zusammen mit ihrem Team belebte Systeme auf nur wenige Grundprinzipien zu reduzieren. Ihr Ziel ist eine durchweg biophysikalisch, quantitativ beschreibbare und aus definierten Ausgangskomponenten zusammengesetzte Minimalzelle. Auf dem Weg zu einem künstlichen, sich selbst organisierenden Minimalsystem der Zellteilung wurde bereits ein aufsehenerregender Erfolg erzielt .*

Wie Nervenzellen miteinander reden

Fr, 30.09.2016 - 06:03 — Reinhard Jahn

Reinhard JahnIcon BiologieNervenzellen sind miteinander durch Synapsen verbunden, an denen Signale in Form von Botenstoffen übertragen werden. Diese Botenstoffe liegen- portionsweise in kleine Membranbläschen (die synaptischen Vesikel) verpackt - im Inneren der Nervenzellen bereit. Wenn elektrische Signale anzeigen, dass eine Botschaft übermittelt werden soll, verschmelzen einige synaptische Vesikel mit der Zellmembran und entleeren ihren Inhalt nach außen. Wie dies genau funktioniert, hat der Biochemiker Reinhard Jahn, Direktor am Max-Planck-Institut für biophysikalische Chemie in Göttingen, erforscht. Nach zahlreichen hochkarätigen Preisen für seine wegweisenden Arbeiten wird er im November mit dem Balzanpreis 2016, einem der bedeutendsten Wissenschaftspreise, ausgezeichnet.*

Die Evolution des Geruchssinnes bei Insekten

Fr, 15.01.2016 - 08:55 — Ewald Grosse-Wilde & Bill S.Hansson

Ewald Grosse-WildeBill S. HanssonIcon BiologieDer Geruchssinn ist für die meisten Insekten von zentraler Bedeutung. Wie dieser das Verhalten von Insekten steuert und auf welchen neurobiologischen Grundlagen dies beruht, wird am Max-Planck Institut für Chemische Ökologie (Jena) sowohl aus einer funktionellen als auch aus einer evolutionstheoretischen Perspektive untersucht. Bisher hatte man angenommen, dass die wichtigste, dem Geruchsinn zugrunde liegende Rezeptorfamilie, die sogenannten olfaktorischen Rezeptoren, in der Evolution im Zuge des Landganges entstanden ist. Neueste Untersuchungen der Autoren an flügellosen Insekten zeigen nun aber, dass dies nicht der Fall ist. Wahrscheinlich war der entscheidende Faktor nicht der Landgang, sondern der Flug: Fliegende Insekten müssen Duftfahnen in weit höherer Geschwindigkeit auflösen können, wofür die älteren Rezeptorfamilien wahrscheinlich nicht ausreichten *

Porträt eines Proteins. — Die Komplexität lebender Materie als Vermittlerin zwischen Wissenschaft und Kunst

Icon ChemieMit der Feststellung, daß unser Verständnis der materiellen Beschaffenheit der Welt vor allem auf unseren Kenntnissen der Kristallographie gründet , hat die Generalversammlung der Vereinten Nationen das Jahr 2014 zum Internationalen Jahr der Kristallographie erklärt. Die Kristallstruktur eines Moleküls ermöglicht über dessen 3D-Bild hinaus auch Einblicke in seine Funktion. Dieses komplexe System einfach und deutlich zu veranschaulichen erinnert an die Kunst eines Porträtisten, dessen Bild auch über den Charakter des Dargestellten Auskunft gibt. Das Porträt des Proteins Aquaporin-1 macht erkennbar, wie es den essentiellen Durchtritt von Wasser durch die Membranen der Lebewesen ermöglicht.

Gottfried SchatzDie Neue Nationalgalerie von Berlin hütet in ihrem Untergeschoss einen besonderen Schatz - Oskar Kokoschkas Porträt seines Freundes und Förderers Adolf Loos (Abbidung 1, beigefügt von Redaktion). Dieses expressionistische Meisterwerk lässt tief in die Seele des grossen Architekten blicken. Zwar lassen weder der angedeutete Rumpf noch der träumende Blick den kämpferischen Neuerer erkennen, doch die übergross gemalten, fiebrig ineinander verschlungenen Hände verleihen diesem Bild eine hypnotische Kraft. Sie sprechen von Zweifeln und inneren Stürmen und sind dennoch die entschlossenen Hände eines Homo Faber, der Grosses baut.

Transportunternehmen Zelle

Icon Politik & GesellschaftDer Nobelpreis 2013 wurde für die Aufklärung fundamentaler zellphysiologischer Mechanismen verliehen.

Die Verleihung des diesjährigen Nobelpreises für Medizin oder Physiologie an James E. Rothman, Randy W. Schekman und Thomas C. Südhof, zeichnet deren Entdeckungen zu einem essentiellen Transportsystem in unseren Zellen aus, nämlich die Organisation des Transports von Molekülen, verpackt in sogenannte Vesikeln. Auf Grund ihrer fundamentalen Bedeutung sind diese Forschungsergebnisse bereits als etablierter Wissensstandard in allen einschlägigen Lehrbüchern angeführt und unabdingbarer Bestandteil von biologischen (Einführungs)vorlesungen.

Inge Schuster„In einem großen und geschäftigen Hafen sind Systeme notwendig, die sicherstellen, daß die korrekte Fracht zur richtigen Zeit an den korrekten Zielort geliefert wird.“ Mit etwa diesen Worten illustrierte Juleen Zierath, Vorsitzende des Komitees für den Medizin Nobelpreis, die Situation, in der sich Zellen höherer Organismen (Eukaryoten) befinden [1]

Zellen sind Fabriken, die - für den „Eigenbedarf“ oder auch für den Export - unterschiedlichste Biomoleküle produzieren, angefangen von Hormonen und Neurotransmittern bis hin zu großen Proteinen, welche exakt zur richtigen Zeit, an präzise definierten Stellen innerhalb der Zelle anlangen müssen oder aus der Zelle ausgeschleust werden um ihre Funktionen ausüben zu können. (Man denke hier beispielsweise an das Timing der Insulin-Ausschüttung zur Regulation unseres Blutzuckerhaushalts oder die Freisetzung von Neurotransmittern zur Signalübertragung von einer Nervenzelle zur benachbarten Nervenzelle.)

Die biomimetische künstliche Nase – wie weit sind wir? Teil 2. Aufbau und Funktion physiologischer Geruchssensoren

Icon MINT(Fortsetzung von Teil 1: Künstliche Sensoren nach dem natürlichen Vorbild unserer fünf Sinne, erschienen am 12.Jänner)

Wolfgang Knoll
Einige heute bekannte Details über den Aufbau der Geruchssensoren, und zwar sowohl für Wirbeltiere als auch für Wirbellose, also z.B. den Insekten, sind stark vereinfacht in Abbildung 3 gegeben.

Bei den Wirbeltieren, also auch bei der Ratte, dem Hund und beim Menschen befinden sich die meisten Nervenzellen im Riech-Epithel (Riechschleimhaut) im Dach der Nasenhaupthöhle. Hier sitzen Millionen von Riechzellen. Die Signale werden von dort über den Riechnerv direkt an das Gehirn weitergeleitet. Die Riechzellen (Olfactory Sensory Neurons) reichen mit ihren Riechhaaren (Ciliae) bis in die Nasenschleimhaut (Mucosa), die mit ihrem Sekret (Mucus) die Zellen und ihre Membranen vor dem Austrocknen schützen müssen, da diese im direkten Kontakt mit der eingeatmeten Luft mit den mitgeführten zu detektierenden Duftstoffen und Pheromonen steht.

Aufbau von Geruchssensoren
Abbildung 3: Zum Aufbau der Geruchssensoren von Wirbeltieren (Mensch, rechte Bilder) und Wirbellosen (Insekten, linker Cartoon) mit dem zentralen Element einer durch Geruchs- Rezeptoren funktionalisierten Membran im Zentrum (im Kreis).

Bei Wirbellosen wird der Riechnerv in den Sensillen der Antennen durch die sogenannte Cuticula (selbsttragende „Körperdecke“) mechanisch geschützt und vor dem Austrocknen bewahrt. Die durch die vorbei streichende Luft antransportierten Duftstoffe können durch Poren in der Cuticula den Riechnerv erreichen, welcher von der Lymphe umgeben ist und bei Bindung eines Duftstoffes oder eines (Art-) spezifischen Pheromons ein bestimmtes elektrisches Signal, die Spikes, generiert.

Wie erreichen Duftstoffe ihre Geruchssensoren?

Da die über Geruchssensoren ablaufenden molekularen Prozesse die Basis für jede Überlegung zum Konzept und Bau einer künstlichen biomimetischen Nase darstellen, sollen sie im Folgenden noch etwas genauer, wenn auch nach wie vor sehr schematisch dargestellt werden. Dazu betrachten wir die Abbildung 4:

Wie wir die Welt um uns herum wahrnehmen — Membran-Rezeptoren als biologische Sensoren

Icon BiologieDieser Beitrag dient als Einleitung zum Artikel von Wolfgang Knoll: „Die biomimetische künstliche Nase – wie weit sind wir?“, der in mehreren Teilen in den nächsten Wochen erscheinen wird.

Inge SchusterDer letzte Beitrag von Gottfried Schatz im Science-Blog „Wie Gene und chemische Botenstoffe unser Verhalten mitbestimmen“ hat sich mit der Kommunikation von Nervenzellen beschäftigt. Diese erfolgt mit Hilfe kleiner chemischer Moleküle – Botenstoffen – die von einer elektrisch angeregten Senderzelle ausgestoßen werden, an spezifische Rezeptoren von Empfängerzellen andocken und mittels dieser Rezeptoren die Auslösung elektrischer Signale bewirken. Der Signaltransfer hängt von Art, Eigenschaften und individuellen Varianten der Rezeptoren ab, ebenso wie von denen der Proteine, die Synthese und Metabolismus der Botenstoffe bewirken.

Sehr geehrter Besucher, wir laden Sie herzlich ein, Ihre Meinung, Kritik und/oder auch Fragen in einer Mailnachricht an uns zu deponieren. Gültigen Absendern werden wir zügig antworten.

Inhalt abgleichen