Materie

Die bedeutendsten Entdeckungen am CERN

Do, 18.01.2018 - 11:57 — Claudia-Elisabeth Wulz

Claudia-Elisabeth WulzIcon PhysikDer Aufbau der Materie aus Elementarteilchen und die Kräfte, die zwischen diesen wirken, werden im sogenannten Standardmodell der Teilchenphysik zusammengefasst. Wissenschafter am Forschungszentrum für Teilchenphysik CERN (der Europäischen Organisation für Kernforschung) haben hierzu fundamentale Erkenntnisse beigetragen. Mit Hilfe der weltstärksten Teilchenbeschleuniger und -Detektoren testen sie die Gültigkeit der Voraussagen des Standardmodells und dessen Grenzen. Die Teilchenphysikerin Claudia-Elisabeth Wulz (Institut für Hochenergiephysik der OEAW- HEPHY), seit knapp 25 Jahren Leiterin der österreichischen Gruppe des CMS-Experiments - CMS-Trigger - am Large Hadron Collider des CERN, gibt hier einen kurzen Überblick über die bedeutendsten Entdeckungen am CERN.*

Vom Newtonschen Weltbild zur gekrümmten Raumzeit – 100 Jahre Allgemeine Relativitätstheorie

25.12.2015 - 08:18 — Peter Christian Aichelburg

Peter Christian AichelburgIcon physikAm 25. November 1915 hat Albert Einstein seine Allgemeine Relativitätstheorie an der Preußischen Akademie der Wissenschaften präsentiert. Diese Theorie hat das Weltbild revolutioniert, wurde Grundlage sowohl der modernen Kosmologie als auch praktischer Anwendungen, wie beispielsweise des Navigationssystems GPS. Der theoretische Physiker Peter C. Aichelburg (emer. Prof. Universität Wien), dessen Forschungsgebiet selbst im Bereich der Allgemeinen Relativitätstheorie liegt, führt uns hier in die Zeit ihrer Entstehung und zeigt ihre moderne Bedeutung.*

Woraus besteht alle Materie? ScienceBlog besuchte das CERN — Tag 1

Icon PhysikInge SchusterScienceBlog.at veranstaltete eine zweitägige Exkursion an das CERN: unsere Gruppe erhielt Spezialführungen durch namhafte Vertreter des österreichischen Instituts für Hochenergiephysik (HEPHY, ÖAW), die am CERN arbeiten. Sie zeigten uns, wie dort mit Hilfe eines immensen Teilchenbeschleunigers und riesiger Detektoren – vor allem des CMS - fundamentale Erkenntnisse über den Aufbau der Materie aus Elementarteilchen und deren Wechselwirkungen gewonnen werden. Die Eindrücke überstiegen alle unsere Erwartungen, waren Faszination pur! Um die Vielfalt des Erlebten – wenn auch nur in knappster Form – Revue passieren zu lassen, erscheint der Report in zwei Teilen.

CERN: Ein Beschleunigerzentrum — Wozu beschleunigen?

Icon PhysikDas bei Genf angesiedelte CERN (Conseil Européen pour la Recherche Nucléaire) erzielt mit Hilfe großer Teilchenbeschleuniger fundamentale Erkenntnisse über den Aufbau der Materie aus Elementarteilchen und die Wechselwirkung zwischen diesen. Im diesem Artikel erklärt der Autor warum man dafür Teilchen auf sehr hohe Geschwindigkeit und zur Kollision bringen muß. Ein in Kürze folgender Artikel wird sich mit den Experimenten am CERN und deren Ergebnissen beschäftigen.

Manfred JeitlerWarum denn so eilig?

Das europäische Teilchenphysikzentrum CERN ist eine Beschleunigeranlage. „Beschleunigen“ heißt in unserem Sprachgebrauch so viel wie „schneller machen“. Dass heute alles recht schnell gehen soll, wissen wir ja zur Genüge. Wir reisen mit Autos und Flugzeugen, um recht schnell woanders zu sein, von wo wir dann umso rascher wieder abreisen können. Und jetzt verfallen die Physiker auch diesem Schnelligkeitswahn und bauen sogar ein eigenes Zentrum, um alles noch schneller zu machen! Geht es nicht auch ein bisschen langsamer? So etwas denken Sie sich vielleicht jetzt.

Alice im Wunderland – HaseAlice im Wunderland - das weiße Kaninchen: “Oh dear! Oh dear! I shall be too late!" (Lewis Caroll; free clipart, http://www.disneyclips.com/linktous.html)

Die Antwort kommt vielleicht etwas überraschend: nein, langsamer geht es zwar nicht, aber eigentlich kommt es den Physikern überhaupt nicht auf die Schnelligkeit an. Was die Beschleuniger für uns tun, ist, den Teilchen höhere Energien zu verleihen. (Um welche Teilchen es sich hier eigentlich handelt, werden wir weiter unten besprechen.) Bei höheren Geschwindigkeiten hat das bewegte Objekt eine höhere Energie, das wissen wir alle. Im normalen Leben ist das eher eine unangenehme Nebenerscheinung: wenn man mit dem Auto schnell unterwegs ist, will man nur recht rasch von A nach B kommen; dass die in der Geschwindigkeit des Autos steckende Energie beim ungewollten Zusammenstoß mit einem Baum oder anderen Fahrzeug dann dazu verbraucht wird, um das Auto und seine Insassen zu deformieren, ist ein zwar bekannter, aber durchaus unerwünschter Nebeneffekt. Für den Teilchenphysiker sieht das ganz anders aus. Dass die Teilchen so rasch umherfliegen, macht ihre Beobachtung etwas schwieriger. Sie zu untersuchen, geht aber nur, indem man sie mit großer Energie gegeneinander schießt (Abbildung 1).

Sehr geehrter Besucher, wir laden Sie herzlich ein, Ihre Meinung, Kritik und/oder auch Fragen in einer Mailnachricht an uns zu deponieren. Gültigen Absendern werden wir zügig antworten.

Inhalt abgleichen