Kohlenstoff

Warum mehr CO₂ in der Atmosphäre (meistens) nicht zu einem Mehr an Pflanzenwachstum führt

Fr, 29.07.2016 - 07:49 — Christian Körner

Christian KörnerIcon BiologieDas Pflanzenwachstum beruht auf dem Prozess der Photosynthese . Entgegen der weitverbreiteten Vorstellung, dass dieser Vorgang durch Trockenheit oder Kälte limitiert wird und dies die Versorgung der Pflanzen mit den, für ihr strukturelles Wachstum essentiellen Kohlehydraten begrenzt, ist das Gegenteil der Fall. Univ.Prof. Christian Körner (Botanisches Institut, Univ. Basel) zeigt hier auf, dass es die zellulären Vorgänge der Gewebebildung sind, die zuerst von einem Mangel an Wasser und Nährstoffen und von Kälte betroffen sind und damit die Rate des Wachstums bestimmen. In der freien Natur, wo Pflanzen um die meist knappen Ressourcen konkurrieren, bestimmt die Gewebebildung den Bedarf an den Produkten der Photosynthese (und deren Generierung).Dies demonstriert Körner in einer einzigartigen Langzeitstudie an einem naturbelassenen Wald: ein vermehrtes CO2-Angebot führt nicht zu einem verstärktem Wachstum der Bäume.

Kann Palmöl nachhaltig produziert werden?

Fr, 22.07.2016 - 06:06 — IIASA

IIASAIcon GeowissenschaftenEine neue Studie [1] zeigt auf wo und in welchem Umfang Palmölplantagen ausgeweitet werden können, ohne dass eine weitere Entwaldung von naturbelassenen, kohlenstoffreichen tropischen Wäldern erfolgt*

Der Boden - ein unsichtbares Ökosystem

Fr, 01.04.2016 - 10:58 — Knut Ehlers

Knut EhlersIcon BiologieWie fruchtbar Böden sind, wird von vielen Faktoren bestimmt: vom Alter, vom Ausgangsgestein, vom Humusgehalt, von den Klimaverhältnissen und den Menschen. Der Agrarwissenschaftler Dr. Knut Ehlers (Umweltbundesamt, Dessau-Roßlau, Deutschland) gibt eine prägnante Übersicht, die von den Bodenorganismen bis hin zu den globalen Beschaffenheiten und Eigenschaften der Böden reicht.*

Der Boden – Grundlage unseres Lebens

Fr, 04.12.2015 - 07:30 — Rattan Lal

Rattan LalIcon GeowissenschaftenDie vielen miteinander konkurrierenden Nutzungen des Bodens durch die noch immer wachsende Weltbevölkerung machen ihn zur stark gefährdeten Ressource. Der sorgsame, nachhaltige Umgang mit dem Boden und die Wiederherstellung degradierter und verarmter Böden sind daher unerlässlich, sie sind die Lösung wesentlicher globaler Probleme des 21. Jahrhunderts . Rattan Lal (Ohio State University), einer der weltweit führenden Bodenwissenschaftler, zeigt hier die Bedeutung des Bodens und seine Rolle im globalen ökologischen Wandel auf.*

Boden - Der große Kohlenstoffspeicher

Fr, 27.11.2015 - 11:41 — Rattan Lal

Rattan LalIcon GeowissenschaftenIn drei Tagen treffen 25 000 Delegierte aus mehr als 190 Ländern zur diesjährigen UN-Klimakonferenz (COP 21) in Paris zusammen. Deren Ziel ist es ein globales Klimaschutzabkommen zustande zu bringen, welches die drohenden katastrophalen Auswirkungen des Klimawandels verhindert aber dennoch ein Wirtschaftswachstum in gefährdeten Entwicklungsländern ermöglicht. Der renommierte Bodenexperte Rattan Lal (Ohio State University) hat in bahnbrechenden Untersuchungen das Potential des Bodens zur Kohlenstoffspeicherung aufgezeigt und darauf basierende, effiziente Verfahrensweisen, um dem globalen Wandel entgegenzuwirken. Von diesen Konzepten überzeugt, wird der französische Landwirtschaftsminister Stephane Le Foll diese unter die empfohlenen Maßnahmen der COP 21 aufnehmen. Im nachstehenden Artikel* gibt Rattan Lal einen summarischen Überblick über die Kohlenstoffspeicherung in unterschiedlichen Bodentypen. Dies ist als Einleitung zu weiteren Artikeln des Autors zu sehen, in denen er über die anthropogenen Auswirkungen auf Boden und Klima berichten und Lösungsvorschläge geben wird.

Die Erde ist ein großes chemisches Laboratorium – wie Gustav Tschermak vor 150 Jahren den Kohlenstoffkreislauf beschrieb

Fr, 26.06.2015 - 11:26 — Redaktion

Icon GeowissenschaftenGustav Tschermak (1836 – 1927) war im Wien der Donaumonarchie Professor für Mineralogie und Petrographie, einer der prominentesten Vertreter und Begründer einer Wiener Schule dieser Fachgebiete. Tschermaks fachlicher Hintergrund war die Chemie, er wandte deren Methoden zur Untersuchung von Mineralien, Gesteinen und Meteoriten an und hatte damit bahnbrechende Erfolge. In seinen frühen wissenschaftlichen Arbeiten befasste sich Tschermak mit Fragestellungen der Chemie/Geochemie, wie beispielsweise mit dem Kreislauf des Kohlenstoffs.

Graphen – Wunderstoff oder Modeerscheinung?

Icon Physik

Klaus Müllen

Zwei Phänomene werden für die Zukunft unserer Gesellschaft entscheidend sein: Energieversorgung und Informationsverarbeitung. Die Qualität unserer Lösungsansätze dazu hängt von den Materialien ab. Graphen, ein monolagiger Ausschnitt aus dem Graphit, wird gegenwärtig als Wunderstoff gehandelt. Der Chemiker Klaus Müllen, Direktor des Max-Planck Instituts für Polymerforschung (Mainz) [1], erörtert welche Forderungen zu erfüllen sind, dass auf Basis von Graphen robuste zukunftsträchtige Technologien entstehen [2].

Landwirtschaft pflügt das Klima um

Julia PongratzChristian ReickIcon GeowissenschaftenSeit der Erfindung von Ackerbau und Viehzucht wandelt der Mensch natürliche Vegetation in Acker- und Weideland um. Die Pflanzengemeinschaften der Kontinente bestimmen jedoch unser Klima auf vielfältige Weise mit. Der Mensch hat möglicherweise schon Klimaveränderungen verursacht, lange bevor er begann, massiv Öl und Kohle zu verbrennen.

Rückkehr zur Energie aus dem Wald — mehr als ein Holzweg? (Teil 2)

Icon Politik & GesellschaftDer Waldökologe Gerhard Glatzel reflektiert über Klimaschutzpolitik im Allgemeinen, über Energiesparen und über die Rolle von Wäldern als Energiequelle und Kohlenstoffspeicher im Speziellen [1]. Im vorliegenden 2. Teil befasst er sich mit Energiesicherheit statt Klimaschutz und dem Dilemma des Energiesparens.

Teil 2 - Energiesicherheit

Paradigmenwechsel nach Fukushima: Energiesicherheit und Verfügbarkeit der Energieträger stehen im Vordergrund

Gerhard GlatzelDie am 11. März 2011 von einem gewaltigen Erdbeben mit nachfolgender Tsunamiflutwelle ausgelöste Nuklearkatastrophe von Fukushima rückte den Ausstieg aus der Atomkraft, als das ursprünglich wichtigste Argument für die Energiewende, wieder in den Vordergrund. Deutschland faßte am 30. Mai 2011, also weniger als drei Monate nach Fukushima, den Beschluß aus der Atomenergie auszusteigen und innerhalb eines Zeitraums von zehn Jahren seine Kernkraftwerke abzuschalten. Für die deutsche Energiepolitik bedeutete die Entscheidung, daß Energieträgerverfügbarkeit sowie Energiesicherheit als Hauptargumente für die Energiewende in den Vordergrund traten und daß das durch ständige Wiederholung abgenutzte Klimaschutzargument in der öffentlichen Diskussion in den Hintergrund geriet. Die Verringerung der Abhängigkeit von den oft aus politisch instabilen Gegenden bezogenen fossilen Energieträgern und den sich insgesamt erschöpfenden Erdöl- und Erdgasvorräten des Planeten gaben der Forderung nach einem Umstieg auf nicht-fossile Energie, insbesondere Solar- und Windenergie, Wasserkraft und Biomasse starken Auftrieb.

Rückkehr zur Energie aus dem Wald — mehr als ein Holzweg? (Teil 1)

Teil 1: Energiewende und Klimaschutz

Icon BiologieAuf Grund des globalen Wachstums der Bevölkerung, des Wirtschaftswachstums, der fortschreitenden Urbanisierung und des steigenden Bedarfs an energieabhängigen Leistungen wird erwartet, daß sich der globale Energieverbrauch bis 2050 verdoppelt. Der Waldökologe Gerhard Glatzel reflektiert über Klimaschutzpolitik im Allgemeinen, über Energiesparen und über die Rolle von Wäldern als Energiequelle und Kohlenstoffspeicher im Speziellen [1].

Gerhard GlatzelDer Begriff „Energiewende“ war der Titel einer vom deutschen Öko-Institut erarbeiteten, wissenschaftlichen Prognose zur vollständigen Abkehr von Kernenergie und Energie aus Erdöl. Das Konzept wurde auch als Taschenbuch veröffentlicht [2]. Ursprünglich war der Ausstieg aus der Kernenergie die vorherrschende Motivation. Mit zunehmenden Erkenntnissen über die Klimaerwärmung wurde das Thema „Klimaschutz“ immer aktueller. Die unausweichliche Erschöpfung fossiler Energiequellen und die Abhängigkeit von Öl- und Gasimporten aus politisch instabilen Weltgegenden sind weitere starke Argumente für die Energiewende.

Da die Gefahren von Atomkraftwerken in verschiedenen Ländern unterschiedlich dargestellt und wahrgenommen wurden, war es nicht möglich, globale Abkommen über den Ausstieg aus der Kernenergie zu erzielen. Daher wurde die Erderwärmung durch die Emission von Treibhausgasen sehr bald zum beherrschenden Element der Energiewende-diskussion.

Das Element Zufall in der Evolution

Icon PhysikDie Bedingungen, die zur Entstehung und Entwicklung von Leben führten, sind eng mit der Entwicklung des gesamten Kosmos verknüpft. Wie sieht ein theoretischer Physiker die Aussage, die Evolution sei zufällig verlaufen.

Peter Christian AichelburgNach der allgemein anerkannten Urknall-Theorie hat sich das Universum aus einer dichten, sehr heißen Urphase über nahezu 14 Milliarden Jahre zum heutigen Zustand in Form von Milliarden von Sternen zusammengeballt zu Galaxien und Galaxienhaufen, Superhaufen und Filamenten entwickelt, eingebettet in einen Kosmos der mit zunehmender Geschwindigkeit expandiert. Die heute beobachtbaren Strukturen des Universums sind also erst allmählich entstanden (Abbildung 1).

UrknallAbbildung 1. Urknall-Modell: Entstehung und Expansion des Weltalls. Das anfänglich sehr dichte und heißere Universum enthielt im kosmischen Plasma Photonen, die vorerst an den geladenen Teilchen gestreut wurden, Nach der Abkühlung und Entstehung von Atomen konnten sich die Photonen nahezu ungehindert ausbreiten = Hintergrundstrahlung. Danach begann allmählich unter der Wirkung der Gravitation die Kondensation der Materie zu den Strukturen wie wir sie heute beobachten.

Die biologische Evolution auf der Erde ist eng mit der Evolution des ganzen Kosmos verknüpft. Voraussetzung für das Leben auf der Erde war die Existenz von Kohlenstoff. Dieser kann aber nur im Inneren von Sternen durch Kernfusion entstanden sein: Waren in den ersten Sekunden nach der „Geburt des Kosmos“ aus der „Ursuppe“ von Elementarteilchen nur die leichtesten Atomkerne – Wasserstoff und Helium (und Spuren von Lithium, Beryllium) entstanden, so wurden die schwereren Elemente durch Kernfusionsprozesse im Innern der ersten, aus kollabierten Gaswolken entstandenen Sterne erzeugt. Somit ist die Entstehung von Leben erst nach dem Ausbrennen und Explodieren der ersten Sterne (Supernovae), das heißt erst ab der zweiten Sterngeneration möglich.

HOLZWEGE – Benzin aus dem Wald

Gerhard GlatzelIcon BiologieAm 26. November 2011 schreibt „Die Presse“ als Schlagzeile auf ihrer Titelseite: „Klimapolitik ist klinisch tot – Die Verhandlungen über ein globales Klimaschutzabkommen stecken in einer Sackgasse. Ein Ausweg ist auch bei der UN-Konferenz in Durban nicht in Sicht“. Eine Woche zuvor, am 19. Oktober 2011, hat der österreichische Nationalrat ein Klimaschutzgesetz [1] verabschiedet, das den einzelnen Wirtschaftssektoren ab 2012 verbindliche Einsparziele für Kohlendioxidemissionen vorschreibt. Österreich verpflichtet sich, seine Treibhausgasemissionen bis 2012 um 13 Prozent (gegenüber 1990) sowie bis 2020 um 16 Prozent (gegenüber 2005) zu senken.

Dieser irritierende Widerspruch veranlasst den emeritierten Waldökologen einmal mehr über Klimaschutzpolitik im Allgemeinen und über die Rolle von Wäldern als Energiequelle und Kohlenstoffspeicher im Speziellen zu reflektieren.

Klimaschutz: Faktum – Fiktion – Illusion

Faktum ist, dass sich unser Planet gegenwärtig in einer Phase markanter Klimaerwärmung befindet und diese mit dem Anstieg der Konzentration von Treibhausgasen in der Atmosphäre aus anthropogenen Quellen, insbesondere aus der Verbrennung fossiler Energieträger sowie aus industriellen und agrarischen Aktivitäten, gut korreliert. Diese Erkenntnis führte 1992 zur Verabschiedung der United Nations Framework Convention on Climate Change (UNFCCC), einem internationalen Umweltabkommen mit dem Ziel, eine gefährliche anthropogene Störung des Klimasystems zu verhindern und die globale Erwärmung zu verlangsamen sowie deren Folgen zu mildern. Am 11. Dezember 1997 wurde das Kyoto-Protokoll als Zusatzprotokoll zur Klimarahmenkonvention der Vereinten Nationen beschlossen. Das am 16. Februar 2005 in Kraft getretene und 2012 auslaufende Abkommen legte erstmals völkerrechtlich verbindliche Zielwerte für den Ausstoß von Treibhausgasen in den Industrieländern fest. Bis Anfang 2011 haben 191 Staaten sowie die Europäische Union das Kyoto-Protokoll ratifiziert, wobei die USA die bedeutendste Ausnahme bilden. Die Aussichten, beim gegenwärtigen 17. UN-Klimagipfel in Durban (Beginn am 28. November 2012) eine wirksame Nachfolgeregelung zum Kyoto-Protokoll zu finden und global verbindliche Vorschriften für die Reduktion des Ausstoßes von Treibhausgasen beschließen zu können, werden als gering eingestuft.

Sehr geehrter Besucher, wir laden Sie herzlich ein, Ihre Meinung, Kritik und/oder auch Fragen in einer Mailnachricht an uns zu deponieren. Gültigen Absendern werden wir zügig antworten.

Inhalt abgleichen