Evolution

S-Schichten: einfachste Biomembranen für die einfachsten Organismen

Fr, 16.01.2015 - 09:11 — Uwe Sleytr, Inge Schuster

Uwe SleytrIcon BiologieS-Schichten, eine äußere Umhüllung von prokaryotischen Zellen (Archaea und Bakterien), sind jeweils aus einer einzigen Art eines Proteins aufgebaut. Diese, zur Selbstorganisation fähigen, Proteine erzeugen hochgeordnete, kristalline Gitter. Mit derartigen (funktionalisierten) Proteinen lassen sich unterschiedlichste Oberflächen beschichten und damit effiziente Lösungen (nicht nur) für (nano)biotechnologische Anwendungen finden. Der Mikrobiologe Uwe Sleytr - ein Pionier auf diesem Gebiet – liefert seit mehr als 40 Jahren fundamentale Beiträge zu Struktur, Aufbau, Funktion und Anwendung von S-Schichten [1].

Täuschende Schönheiten

Fr, 19.12.2014 - 06:29 — Bill S. Hansson

Bill S. HanssonIcon BiologieMit chemischen Tricks täuschen Aronstabgewächse und Orchideenblüten den Geruchssinn fliegender Insekten, um fremden Pollen zu empfangen und eigenen Pollen an benachbarte Blüten weiterzugeben. Dazu imitieren die Pflanzen beispielsweise die Duftstoffe gärender Hefe, um Fruchtfliegen anzulocken, oder weibliche Sexuallockstoffe, um Insektenmännchen als Bestäuber zu missbrauchen und am Ende sogar ohne Belohnung zu entlassen. Der Biologe Bill S. Hansson, Direktor am Max-Planck Institut für Chemische Ökologie und derzeitiger Vizepräsident der Max Planck Gesellschaft zeigt auf, wie die Aufklärung der chemischen Botenstoffe und ihrer Wirkung neue Einblicke in die Ökologie und Ko-Evolution von Pflanzen und Insekten erlaubt.*

Artentstehung – Artensterben. Die kurz- und langfristige Perspektive der Evolution

Christian SturmbauerIcon BiologieArtensterben und Artenentstehung sind integrale Bestandteile des Evolutionsprozesses. Sie verlaufen nicht kontinuierlich sondern werden von Elementarereignissen der Umwelt diktiert. Der Zoologe und Evolutionsbiologe Christian Sturmbauer (Universität Graz) beschreibt anhand von Modellorganismen – ostafrikanischen Buntbarschen – wie Biodiversität entsteht und welche Rolle darin Umwelt und Konkurrenz spielen [1].

Themenschwerpunkt: Biokomplexität

Icon Biologie„Über Generationen hin haben Wissenschafter Teile unserer Umwelt separiert untersucht – einzelne Spezies und einzelne Habitate. Es ist an der Zeit, zu verstehen, wie diese Einzelteile als Ganzes zusammenwirken. Biokomplexität ist ein multidisziplinärer Ansatz um die Welt, in der wir leben, zu verstehen“ (Rita Colwell, 1999 [1]).

Der Begriff Komplexität ist ein Modewort geworden und aus dem Alltagsleben nicht mehr wegzudenken. Was früher als kompliziertes, aber mit entsprechendem Einsatz als durchaus lösbares Problem angesehen wurde (also beispielsweise ein Uhrwerk zu reparieren), erhält nun häufig das Attribut „komplex“.

Was ist Komplexität?

Konkurrenz, Kooperation und Hormone bei Schimpansen und Bonobos

Icon BiologieTobias DeschnerDie Erforschung von Gemeinsamkeiten und Unterschieden im Verhalten und in der Physiologie von Menschen und Menschenaffen verhilft zu einem immer besseren Verständnis der menschlichen Evolution. Der Primatenforscher Tobias Deschner (Max-Planck-Institut für evolutionäre Anthropologie in Leipzig) beschreibt anhand von Verhaltensbeobachtungen und Messungen physiologischer Parameter frei lebender Menschenaffen, wie sich Konkurrenz und Kooperation auf die Exkretion verschiedener Hormone auswirken*.

Warum ist Astrobiologie so aufregend?

Pascale EhrenfreundIcon AstronomieSchon seit vielen Jahrzehnten gibt es großes Interesse, eine Spezialwissenschaft zur Evolution organischen Materials und der Entstehung des Lebens auf der Erde sowie der Suche nach Leben im Weltall zu gründen. Neben den Fachgebieten der Kosmobiologie und Exobiologie setzte sich in den 90er-Jahren das Spezialforschungsgebiet der Astrobiologie durch. Pascale Ehrenfreund, derzeit Präsidentin des FWF, die zu den Pionieren und renommiertesten Wissenschaftern der Astrobiologie gehört, beschreibt wesentliche Fragestellungen in dieser Disziplin.

Mikroorganismen

Icon BiologieMit einzelligen Mikroorganismen hat vor mehr als 3 Milliarden Jahren das Leben auf unserem Planeten begonnen. Die winzigen Organismen haben den Evolutionsprozess in Gang gesetzt und eine Atmosphäre aufgebaut, welche viel später – vor rund 650 Millionen Jahren - die Entstehung von Vielzeller-Organismen erlaubte.

Als individuelle Zellen sind Mikroorganismen mit dem freien Auge nicht erkennbar. Um sie sichtbar zu machen, bedurfte es erst eines Mikroskops mit sehr hoher Auflösung, welches erstmals der Holländer Antonie Van Leeuwenhoek (1632–1723) designte. Mit diesem sehr kleinen Instrument beobachtete in wässrigem Milieu „eine große Vielzahl unterschiedlicher Animalcula“ - Bakterien, Protozoen und Pilze (Hefen) -, die sich bewegten (Abbildung 1) .

Der weltberühmte Entwicklungsbiologe Walter Gehring ist tot.

Icon WissenschaftsgeschichteWalter Gehring hat fundamentale Prinzipien der molekularen Entwicklungsbiologie entdeckt: die sogenannten Homeobox-Gene lösten die Frage, wie der Bauplan mehrzelliger Organismen in der Embryonalentwicklung festgelegt wird, das Homeobox-Gen Pax6 stellte sich als Hauptschalter in der Entwicklung des Auges in allen Tieren heraus - der Beweis, dass alle unterschiedlichen Augentypen – von den Plattwürmern bis hin zum Menschen - vom selben Prototyp abstammen. Über dieses letztere Thema hat Walter Gehring ScienceBlog.at einen Artikel: Auge um Auge - Entwicklung und Evolution des Auges gewidmet. Walter Gehring verstarb am 29. Mai an den Folgen eines schweren Verkehrsunfalles.

Gibt es einen Newton des Grashalms?

Icon MINTDie von Isaac Newton aufgestellten Gesetze beschreiben den Aufbau des Universums aus unbelebter Materie. Lässt sich aber die Entstehung eines Lebewesens, beispielsweise eines Grashalms, aus unbelebter Materie erklären? Kant hat diese Frage verneint. Die modernen molekularen Lebenswissenschaften scheinen jedoch imstande zu sein, die Kluft zwischen unbelebter und lebender Materie zu schließen.

Peter SchusterIm Jahr 1790 stellte Immanuel Kant in seiner „Kritik der Urteilskraft“ die berühmte Behauptung auf, dass es wohl nie einen „Newton des Grashalms“ geben werde, weil der menschliche Geist nie fähig sein würde zu erklären, wie Leben aus unbelebter Materie entstehen könne (Originaltext in Abbildung 1).

Kant: Critik der Urtheilskraft, §75Abbildung 1. Immanuel Kant: Critik der Urtheilskraft, §75 (Zweyte Auflage, bey F.T.Lagarde, Berlin 1793; Bild: kant.bbaw.de)

Eben als ein solcher „Newton des Grashalms“ wurde Charles Darwin rund 70 Jahre später von dem deutschen Naturalisten Ernst Haeckel gefeiert. Allerdings teilten die Zeitgenossen Haeckels keineswegs die Begeisterung über Darwin und auch heute ist sie endendwollend, wenn auch die bahnbrechende Rolle von Darwins Untersuchungen keineswegs in Zweifel gezogen wird.

Die amerikanische Physikerin, Molekularbiologin und Philosophin Evelyn Fox Keller meint dazu, daß es einfach falsch ist, Darwin als einen Newton der Biologie zu betrachten: Darwin selbst habe ja systematisch vermieden sich die Frage zu stellen, wie Leben aus unbelebter Materie entstehen könne. Seine natürliche Selektion beginne ja erst mit der Existenz lebender Zellen.

Sehr geehrter Besucher, wir laden Sie herzlich ein, Ihre Meinung, Kritik und/oder auch Fragen in einer Mailnachricht an uns zu deponieren. Gültigen Absendern werden wir zügig antworten.

Inhalt abgleichen