Bakterien

Mikroorganismen

Icon BiologieMit einzelligen Mikroorganismen hat vor mehr als 3 Milliarden Jahren das Leben auf unserem Planeten begonnen. Die winzigen Organismen haben den Evolutionsprozess in Gang gesetzt und eine Atmosphäre aufgebaut, welche viel später – vor rund 650 Millionen Jahren - die Entstehung von Vielzeller-Organismen erlaubte.

Als individuelle Zellen sind Mikroorganismen mit dem freien Auge nicht erkennbar. Um sie sichtbar zu machen, bedurfte es erst eines Mikroskops mit sehr hoher Auflösung, welches erstmals der Holländer Antonie Van Leeuwenhoek (1632–1723) designte. Mit diesem sehr kleinen Instrument beobachtete in wässrigem Milieu „eine große Vielzahl unterschiedlicher Animalcula“ - Bakterien, Protozoen und Pilze (Hefen) -, die sich bewegten (Abbildung 1) .

Das mikrobielle Leben der Tiefsee

Icon BiologieDer tiefe, dunkle Ozean - das größte und am wenigsten erforschte Ökosystem der Erde - bietet Lebensraum für eine enorme Vielfalt an Mikroorganismen. Zu deren Stoffwechsel liefert der Autor essentielle Beiträge mit dem Ziel die biogeochemikalischen Kreisläufe im Meer (mikrobielle Ozeanographie) zu erforschen und damit zu einem generell besseren Verständnis des globalen Kohlenstoffkreislaufs und damit des Ökosystems Erde beizutragen.

Gerhard HerndlDer tiefe dunkle Ozean nimmt mehr als 70% des Gesamtvolumens der Meere ein. Er ist der größte und zugleich unerforschteste Lebensraum unserer Erde, eine Zone ohne Licht, welches dort lebenden Organismen mittels Photosynthese ein autotrophes Leben ermöglichen könnte. Bereits ab 200 m Tiefe – der mesopelagialen- oder „Zwielicht“ Zone - dient schwach durchschimmerndes Licht nur noch der Orientierung von Lebewesen; ab 1000 m herrscht totale Finsternis. Die hier lebenden Organismen müssen sich auch dem zunehmenden Druck der Wassersäule – 1bar je 10 m; bei 5000 m sind es bereits 500 bar – anpassen, den niedrigen Temperaturen von etwa 2 °C und dem verringerten Nährstoffangebot.

Schöpfer Zufall — Wie chemische Zufallsprozesse dem Leben Vielfalt schenken

Icon BiologieZufälle und Fehler beim Kopieren des Erbguts schaffen biologische Varianten, aus denen im Lauf der Evolution immer komplexeres Leben entsteht. Zufällige, nicht vorhersagbare chemische Reaktionen einiger Moleküle können die Erscheinung und das Verhalten eines Lebewesens beeinflussen. Zufälle und Fehler sind Quellen des Neuen, ohne sie wären wir alle noch Bakterien.

Gottfried SchatzUnser Biologielehrer war ein romantischer Naturfreund, für den die lebendige Natur vollkommen war. Sein Credo lautete: «Das Leben ist immer im Gleichgewicht.» Wenn ich heute an ihn denke, erinnert er mich an den deutschen Archäologen und Kunsthistoriker Johann Joachim Winckelmann (1717–1768), für den Kunst und Philosophie der alten Griechen von «edler Einfalt und stiller Grösse» waren. Als dann aber im Jahre 1872 Friedrich Nietzsche das dionysisch Dunkle in der griechischen Kultur aufzeigte, hatten Charles Darwin und Alfred Wallace auch das Leben bereits seiner Idylle beraubt und als ein gnadenloses Schlachtfeld entlarvt.

Das Leben ist mit seinem Umfeld nie im Gleichgewicht. Es ist so erfolgreich, weil es nie vollkommen ist. Versucht eine Lebensform sich an ihr Umfeld anzupassen, verändert sie es – und muss sich erneut anpassen. Dieses nie endende Streben nach Anpassung zeugt die biologischen Varianten, aus denen die Evolution immer komplexeres Leben schafft. Die Schnelligkeit, mit der ihr dies gelingt, war lange ein Rätsel. Wie entstehen die Varianten, mit denen die Evolution spielt?

Können wir Natur und Evolution übertreffen? Teil 1: Gedanken zur Synthetischen Biologie

Themenschwerpunkt Synthetische Biologie


ÖAWKönnen wir mit der Synthetischen Biologie etwas Besseres bewirken, als das, was Natur und Evolution im Laufe der Jahrmilliarden hervorgebracht haben? Hier erheben sich sofort Fragen wie: „Besser für wen?“, „Besser wofür? oder „Wie kommen Optimierungen überhaupt zustande?“ Der Artikel basiert auf einem Vortrag des Autors anläßlich des Symposiums über Synthetische Biologie, das von der Österreichischen Akademie der Wissenschaften im Mai d.J. veranstaltet wurde; er erscheint auf Grund seiner Länge in zwei aufeinander folgenden Teilen.

Peter SchusterVor weniger als einem Jahr veranstaltete das Jena Life Science Forum eine Tagung unter dem Titel „Designing living matter – Can we do better than evolution?“. Nachdem wir uns nach längerer Diskussion auf diesen Namen geeinigt hatten, waren wir fürs erste zufrieden, aber dann doch über die eigene Frechheit erschrocken: Glaubten wir denn wirklich, dass wir Menschen die Evolution übertreffen können? Nach kurzem Nachdenken trat wieder Beruhigung ein. Solange man nicht präzise sagt, was „better“ oder „übertreffen“ bedeuten soll, ist alles offen. Fast immer kann man die Natur übertreffen, wenn man sich ein einziges Merkmal herausgreift und dann dieses durch menschlichen Eingriff nach Belieben verändert.

Der vorliegende erste Teil dieses Essays schneidet Probleme der Bewertung nach mehreren Kriterien an und geht auf die Frage ein, inwieweit Optimalität in der Natur vorherrscht.

Optimalität und Pareto-Gleichgewicht

Optimalität im täglichen Leben ist leicht definiert: Wir möchten ein genau definiertes Produkt kaufen, sehen bei „Geizhals“ oder einem anderen Kaufinformationsprovider online nach, wo das Produkt am billigsten ist, gehen dort einkaufen und haben unseren Einkauf optimiert. Leider ist eine solche eindeutige Sachlage die Ausnahme! Normalerweise haben wir mehrere Kriterien zu beachten, und dann wird der Vergleich schwierig.

Nehmen wir wieder ein alltägliches Beispiel: Jemand möchte ein ökonomisch günstiges Auto kaufen – d.i. niedriger Anschaffungspreis, geringer Benzinverbrauch und Unterhaltskosten –, das gleichzeitig mit möglichst hoher Spitzengeschwindigkeit fahren können soll. Diese beiden Wunschvorstellungen sind nicht miteinander vereinbar und anstelle eines Optimums gibt es eine ganze Reihe von günstigsten Kompromissen, die nach dem Italiener Vilfredo Frederico Pareto als Pareto-Gleichgewicht oder Pareto-Front bezeichnet wird: Eine besseres Ergebnis für das eine Kriterium lässt sich nur durch eine Verschlechterung beim zweiten Kriterium erzielen. In unserem Beispiel: ein rascheres Auto kostet mehr Geld. Die Pareto-Front trennt die ineffizienten und daher verbesserbaren Lösungen von den unmöglichen, die nicht realisiert werden können (Abbildung 1).

Eisendämmerung — Wie unsere Werkstoffe komplexer und intelligenter werden

Themenschwerpunkt: Synthetische Biologie — Leitwissenschaft des 21. Jahrhunderts?


Icon MINTDie Verwendung von in der Natur vorkommenden Materialien wird abgelöst durch den Einsatz von Werkstoffen, welche biologische Strukturen und Funktionen nachahmen und optimieren. Insbesondere verspricht der Nachbau lebender Zellen ein ungeheures Potential an Anwendungsmöglichkeiten. Im Laboratorium massgeschneiderte Lebewesen könnten viel effizienter als natürliche das Sonnenlicht einfangen, Äcker biologisch düngen, Umweltgifte zerstören oder Erze an unzugänglichen Orten schürfen.

Gottfried SchatzZwei wissenschaftliche Revolutionen haben mein Leben geprägt: molekulare Biologie und digitale Elektronik. Jetzt erlebe ich eine dritte: die Revolution der intelligenten Werkstoffe. Seit Jahrtausenden waren unsere Werkstoffe die vorgegebenen Produkte der Natur. Heute ersinnen wir sie im Laboratorium, fertigen sie aus chemisch reinen Ausgangsstoffen und versehen sie mit Information zur Erfüllung bestimmter Aufgaben. Diese Revolution macht selbst unsere edelsten Stähle zu altem Eisen. Eisen ist immer noch unser Werkstoff par excellence, wenn auch Aluminium, Magnesium, Titan, Glas und Keramik ihm immer häufiger den Boden streitig machen. Sie alle sind jedoch, ebenso wie Eisen selbst, nur verfeinerte, umgeformte oder miteinander vermischte Naturstoffe. Doch als 1909 der Belgier Leo H. Baekeland aus zwei reinen Chemikalien das vollsynthetische Plastic-Harz Bakelit schuf, begann ein neuer Abschnitt unserer Zivilisation – und das Ende der Eisenzeit.

Planet der Mikroben — Warum wir Infektionskrankheiten nie endgültig besiegen werden

Icon BiologieBakterien und Viren passen ihr Erbgut viel schneller an die Umwelt an als wir Menschen und finden deshalb immer wieder Wege, um die Abwehr unseres Körpers und unsere Medikamente zu überlisten. In diesem ungleichen Kampf ist unser Wissen die schärfste Waffe.

Gottfried SchatzAls mir am 22. September 1994 der Tontechniker am Internationalen Biochemie-Kongress in Delhi das Mikrofon anheftete, flüsterte er mir eine Botschaft zu, die mir das Blut in den Adern gerinnen liess: Am Tag zuvor sei in Surat, einer Stadt südwestlich von Delhi, die Pest ausgebrochen – und ein Patient bereits gestorben. Später erfuhr ich, dass es in Surat zu einer Massenpanik gekommen war, bei der dreihunderttausend Menschen in nur zwei Tagen die Stadt verließen. Wenn auch die Gesundheitsbehörden die Zahl der Todesopfer auf sechsundfünfzig begrenzen konnten, so zeigte doch die weltweite Bestürzung, wie sehr die Angst vor Pest das Gedächtnis der Menschheit belastet.

Drei grosse Wellen der Pest

Diese Angst ist wohlbegründet, denn das Pestbakterium hat im Verlauf der letzten eineinhalb Jahrtausende in drei gewaltigen Seuchenzügen ungezählte Menschen dahingerafft, weite Regionen ins Elend gestürzt und damit die menschliche Geschichte entscheidend mitgeprägt. Genetische Untersuchungen an Zähnen und Knochen aus historischen «Pestgruben» haben uns ein erstaunlich genaues Bild von den zwei ersten Pandemien gezeichnet. Beide kamen wahrscheinlich aus China und drangen über die Seidenstrasse und über Schiffe nach Westen. Die erste Welle erreichte Konstantinopel unter Kaiser Justinian im Jahre 542 n. Chr., tötete etwa die Hälfte der Bevölkerung Europas und dürfte so den muslimischen Eroberern den Weg geebnet haben. Die zweite Welle erfasste um die Mitte des 14. Jahrhunderts Sizilien und Italien und überrollte ab 1345 von dort aus über Marseille und Norwegen grosse Teile Europas. Der schwarze Tod wütete mit örtlichen Unterbrechungen bis ins 18. Jahrhundert, entvölkerte ganze Landstriche, untergrub die gesellschaftliche Ordnung und führte zu Hungersnot, Judenpogromen und religiöser Hysterie. Auch die dritte grosse Welle hatte ihren Ursprung in China: Sie erfasste 1894 die Provinz Yunnan und erreichte über Hongkong und die Schifffahrtsrouten schnell die ganze Welt.

Grenzen des Ichs - Warum Bakterien wichtige Teile meines Körpers sind

Icon BiologieBakterienzellen besitzen zwar nur rund ein Tausendstel des Volumens unserer Körperzellen, ihre Zahl in und auf unseren Körpern ist aber zehn mal so hoch wie jene, und sie tragen beträchtlich zu unserer Gesundheit bei. Mehr als 10 000 Arten von Bakterien bewohnen unsere Körper, wobei der Großteil in unserem Verdauungstrakt residiert und eine bedeutende Rolle in der Umsetzung und Aufnahme von Nährstoffen spielt. Es gehen aber auch essentielle Bestandteile unserer Zellen – die Mitochondrien - ursprünglich auf Bakterien zurück und wurden zu einem Charakteristikum eukaryotischer Zellen.

Zentralismus und Komplexität

Icon Politik & GesellschaftZentralismus versagt in der Kontrolle hochkomplexer Systeme. Ein eindrucksvolles Beispiel aus den Regulationsmechanismen der Natur. Die Ineffizienz zentraler Kontrollen ist uns allen aus unserem täglichen Leben bekannt. In der Natur ist das Problem der Regulation komplexer Systeme, wie der Genexpression in höheren Organismen, durch ein Zusammenspiel von zentraler und dezentralisierter Kontrolle gelöst.

Zum Ursprung des Lebens — Konzepte und Diskussionen

Peter SchusterDiskussionen über den Ursprung des Lebens – präziser ausgedrückt über den des terrestrischen Lebens – ebenso wie über jenen des Universums, werden in allen unseren Gesellschaften mit großem Interesse verfolgt. Für das letztere Problem existiert ein Standard-Modell, die Urknalltheorie (Big-Bang-Theorie), die sich von einer Extrapolation der Elementarteilchen-Physik auf den Beginn des Universums herleitet.

Nichts Vergleichbares gibt es hingegen, wenn man nach der Entstehung des Lebens fragt. Es konkurrieren zwar viele unterschiedliche Ideen, jedoch bietet keine von ihnen eine ausreichend plausible Erklärung dafür, wie die ersten lebenden Organismen entstanden sein könnten. Es ist ja nicht einmal klar, was unter dem Begriff „Leben“ zu verstehen ist, und mögliche Definitionen sind heftig umstritten.

Wo ist die Grenzlinie zwischen Unbelebtem und Belebtem zu ziehen?

Eine Liste von Kriterien zur Unterscheidung was noch nicht und was schon Leben bedeutet, könnte beispielsweise enthalten

Der kleine warme Tümpel — Was urtümliche Einzeller von der Frühzeit des Lebens berichten

Icon Biologie

Gottfried Schatz

«Woher kommen wir?» Diese Frage hat uns Menschen seit Urzeiten beschäftigt, doch lange konnten allein Mythen und heilige Bücher uns darauf eine Antwort geben. Erst als Biologen über die Entstehung der vielfältigen Lebensformen nachzudenken begannen, erkannten sie, dass diese keine einmaligen Schöpfungen waren, sondern sich unaufhörlich zu neuen Lebensformen wandelten. An diesem Stammbaum des Lebens [1] sind wir Menschen nur ein winziger und später Zweig. Doch wo liegen die Wurzeln dieses Baums? Wie begann das Leben auf unserer Erde?

Sehr geehrter Besucher, wir laden Sie herzlich ein, Ihre Meinung, Kritik und/oder auch Fragen in einer Mailnachricht an uns zu deponieren. Gültigen Absendern werden wir zügig antworten.

Inhalt abgleichen